题目:HDU-3416
题意:有t组数据,n个点,m条边的图。从s走到t点,只走最短距离,每条路只能走一次。问走最短路总共有多少种方案
题解:先用最短路算法求出从起点到各点的距离dist,然后根据dist的值建立新的图,边权为1,套用Dinic模板求起点到终点的最大流即可。但是这里最短路算法最好用SPFA遍历所有边才好,如果用Dij+优先队列需要把vis[i]的访问标记删掉,因为这是求从s到x的最短路有多少条,如果用Dij的话只要求到最小值就好了,所以有可能会漏了某些边,所以要删去vis标记部分
代码:
#include<bits/stdc++.h>
#define N 1005
#define M 100505
#define INF 0x3f3f3f3f
using namespace std;
int T,n,m,s,t,c,c1;
int head[N],head1[N],dis[N],deep[N],cur[N];
bool vis[N];
struct ljh
{
int next,to,w;
}e[2*M],a[2*M];
struct xqy
{
int x,d;
xqy(int x=0,int d=0):x(x),d(x){}
bool operator < (const xqy&a) const
{
return a.d<d;
}
};
inline void add(int x,int y,int z)
{
e[c].next=head[x];
e[c].to=y;
e[c].w=z;
head[x]=c++;
}
inline void add1(int x,int y,int z)
{
a[c1].next=head1[x];
a[c1].to=y;
a[c1].w=z;
head1[x]=c1++;
}
void Dij(int s)
{
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)dis[i]=INF;
priority_queue<xqy>q;
dis[s]=0;
q.push(xqy(s,0));
while(!q.empty())
{
xqy now=q.top();
q.pop();
int x=now.x;
// if(vis[x])continue;
// vis[x]=1;
//要把这个删去,否则一直WA到自闭
for(int i=head[x];i!=-1;i=e[i].next)
{
int nex=e[i].to;
if(dis[nex]>dis[x]+e[i].w)
{
dis[nex]=dis[x]+e[i].w;
q.push(xqy(nex,dis[nex]));
}
}
}
return;
}
bool bfs(int s,int t)
{
queue<int>q;
memset(deep,0,sizeof(deep));
deep[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(int i=head1[x];i!=-1;i=a[i].next)
{
int nex=a[i].to;
if(deep[nex]==0&&a[i].w>0)
{
deep[nex]=deep[x]+1;
q.push(nex);
}
}
}
return deep[t]!=0;
}
int dfs(int x,int t,int maxflow)
{
if(x==t)return maxflow;
int ans=0;
for(int i=head1[x];i!=-1;i=a[i].next)
{
int nex=a[i].to;
if(deep[nex]!=deep[x]+1||a[i].w<=0||ans>=maxflow)continue;
cur[x]=i;
int k=dfs(nex,t,min(a[i].w,maxflow-ans));
a[i].w-=k;
a[i^1].w+=k;
ans+=k;
}
if(ans==0)deep[x]=-2;
return ans;
}
int Dinic(int s,int t)
{
int ans=0;
while(bfs(s,t))
{
memcpy(cur,head1,sizeof(head1));
ans+=dfs(s,t,INF);
}
return ans;
}
int main()
{
scanf("%d",&T);
while(T--)
{
c=0;
c1=0;
memset(head,-1,sizeof(head));
memset(head1,-1,sizeof(head1));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
if(x==y)continue;
add(x,y,z);
}
scanf("%d%d",&s,&t);
Dij(s);
for(int i=1;i<=n;i++)
{
for(int j=head[i];j!=-1;j=e[j].next)
{
if(dis[e[j].to]==dis[i]+e[j].w)
{
add1(i,e[j].to,1);
add1(e[j].to,i,0);
}
}
}
printf("%d\n",Dinic(s,t));
}
}