题目描述
John最近买了一个书架用来存放奶牛养殖书籍,但书架很快被存满了,只剩最顶层有空余。
John共有N头奶牛(1≤N≤20,000),每头奶牛有自己的高度Hi(1≤Hi≤10,000),N头奶牛的总高度为S。书架高度为B(1≤B≤S<2,000,000,007)。
为了到达书架顶层,奶牛可以踩着其他奶牛的背,像叠罗汉一样,直到他们的总高度不低于书架高度。当然若奶牛越多则危险性越大。为了帮助John到达书架顶层,找出使用奶牛数目最少的解决方案吧。
输入
第1行:空格隔开的整数N和B。
第2~N+1行:第i+1行为整数Hi。
输出
能达到书架高度所使用奶牛的最少数目。
样例输入
6 40
6
18
11
13
19
11
样例输出
3
解析
要想让需要的牛越少越好,那么选的牛越高越好,那么用排序可以排出奶牛的高矮。
总高度先设成0,每次循坏,把最高的牛的高度与总高度相加,再进行判断,判断总高度是否大于等于书架高度。是,则输出当前牛的数量并结束循坏;否,则继续进行循坏,直到判断结果变为是。 共两个方案。
#include<iostream>//方一(桶排序)
using namespace std;
int main()
{
int n,b;//n是奶牛数量,b是书架高度
int num[10005]={0};//用于桶排序的数组
cin>>n>>b;//输入
for(int i=1;i<=n;i++)
{
int a;
cin>>a;
num[a]=num[a]+1;
}//输入并进行桶排序
int s=0;//现在牛的总高度
int t=0;//要的牛的数量
for(int i=10000;i>=1;i--)
{
while(num[i]!=0)
{
s=s+i;
num[i]=num[i]-1;
t++;//数量+1
if(s>=b)
{
cout<<t;//输出
return 0;
}
}
}
return 0;
}
#include<iostream>//方二(sort)
#include<algorithm>//sort要用算法头文件
//或者用#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,b,s=0;//n是牛的数量,b是书架高度,s是当前牛的高度
int a[200005];//每头牛的高度
cin>>n>>b;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}//输入
sort(a+1,a+n+1,greater<int>());//sort(起点,终点(终点不参与排序,因此+1)),
//不加greater<int>(),从小到大排序;加上greater<int>(),
从大到小排序
//<> 内为变量类型
for(int i=1;i<=n;i++)
{
s=s+a[i];//牛当前的总高度加上一只牛的高度
if(s>=b)
{
cout<<i;
return 0;
}//当牛的高度大于等于书架高度时,输出当前牛的数量,并结束程序
}
return 0;
}