题目描述 Description
小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏: 经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者。但是T部落的基地里已经有N个建筑设施受到了严重的损伤,如果不尽快修复的话,这些建筑设施将会完全毁坏。现在的情况是:T部落基地里只有一个修理工人,虽然他能瞬间到达任何一个建筑,但是修复每个建筑都需要一定的时间。同时,修理工人修理完一个建筑才能修理下一个建筑,不能同时修理多个建筑。如果某个建筑在一段时间之内没有完全修理完毕,这个建筑就报废了。你的任务是帮小刚合理的制订一个修理顺序,以抢修尽可能多的建筑。
输入描述 Input Description
第一行是一个整数N,接下来N行每行两个整数T1,T2描述一个建筑:修理这个建筑需要T1秒,如果在T2秒之内还没有修理完成,这个建筑就报废了。
输出描述 Output Description
输出一个整数S,表示最多可以抢修S个建筑。
样例输入 Sample Input
4
100 200
200 1300
1000 1250
2000 3200
样例输出 Sample Output
3
数据范围及提示 Data Size & Hint
N<150000,t<=15000
数据不是原数据,是本人自己出的数据。t的范围也与原题不同。
这是一道贪心。
考试时大体一看很容易看成线段覆盖,但其实不是。题目给出的是修建所需的时间和截止的时间。
把需抢修的建筑用任务表示。
如果每个任务的截止的时间是一定的话,那么我们优先处理截止时间靠前的任务,一定是更优的。
所以我们首先把任务按照截止时间从小到大排序,再从0时刻开始尽可能多的放任务。
接着我们就会发现这种情况。
黑色的是已经放上的任务,红色是下一个任务的所需时间(t1)。黄色是下一个任务的截止时间(t2)。
令sum表示当前已经放入的任务的累积时间。我们发现sum+t1已经大于t2了,当前的任务已经放不下了。我们的做法分两种情况讨论:
1.之前所花时间最大的任务的所需时间大于当前任务的所需时间。
(1).抛却时间最大的任务,当前任务可以完成。那我们就抛却那个任务,加入当前任务,结果一定不会更差(完成任务数不变,总时间提前)
(2)抛却时间最大的任务,当前任务不能完成。不作处理。
2.之前所花时间最大的任务的所需时间小于等于当前任务的所需时间
不作处理。
所以我们处理时另开一个堆记录之前完成任务的所需时间。
到这里这个贪心就出来了_(:з」∠)_ …
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
long long N,ans=0;
long long sum=0;
struct maple{
long long t1,t2;
}line[150020];
bool cmp(maple a,maple b)
{
return a.t2<b.t2;
}
priority_queue<long long> q;
int main()
{
scanf("%I64d",&N);
for(int i=1;i<=N;++i)
scanf("%I64d%I64d",&line[i].t1,&line[i].t2);
sort(line+1,line+N+1,cmp);
for(int i=1;i<=N;++i)
{
if(sum+line[i].t1<=line[i].t2)
{
sum+=line[i].t1;
q.push(line[i].t1);
}
else
{
if(q.top()>line[i].t1)
{
sum-=q.top();
if(sum+line[i].t1<=line[i].t2)
{
q.pop();
sum+=line[i].t1;
q.push(line[i].t1);
}
else sum+=q.top();
}
}
}
printf("%d",q.size());
return 0;
}