codevs 2913 建筑抢修

本文介绍了一道名为'建筑抢修'的电脑游戏问题,玩家需要在限定时间内修复建筑,采用贪心策略来确定最优修复顺序。通过将建筑按照截止时间排序,并考虑任务时间与已修复任务累计时间的关系,确定何时放弃已完成任务以增加修复数量。
摘要由CSDN通过智能技术生成

这个题是今天byike他们组考试的t1

题目描述 Description

小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏: 经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者。但是T部落的基地里已经有N个建筑设施受到了严重的损伤,如果不尽快修复的话,这些建筑设施将会完全毁坏。现在的情况是:T部落基地里只有一个修理工人,虽然他能瞬间到达任何一个建筑,但是修复每个建筑都需要一定的时间。同时,修理工人修理完一个建筑才能修理下一个建筑,不能同时修理多个建筑。如果某个建筑在一段时间之内没有完全修理完毕,这个建筑就报废了。你的任务是帮小刚合理的制订一个修理顺序,以抢修尽可能多的建筑。

输入描述 Input Description

第一行是一个整数N,接下来N行每行两个整数T1,T2描述一个建筑:修理这个建筑需要T1秒,如果在T2秒之内还没有修理完成,这个建筑就报废了。

输出描述 Output Description

输出一个整数S,表示最多可以抢修S个建筑。

样例输入 Sample Input

4
100 200
200 1300
1000 1250
2000 3200

样例输出 Sample Output

3

数据范围及提示 Data Size & Hint

N<150000,t<=15000
数据不是原数据,是本人自己出的数据。t的范围也与原题不同。

这是一道贪心。
考试时大体一看很容易看成线段覆盖,但其实不是。题目给出的是修建所需的时间和截止的时间。
把需抢修的建筑用任务表示。
如果每个任务的截止的时间是一定的话,那么我们优先处理截止时间靠前的任务,一定是更优的。
所以我们首先把任务按照截止时间从小到大排序,再从0时刻开始尽可能多的放任务。
接着我们就会发现这种情况。
这里写图片描述
黑色的是已经放上的任务,红色是下一个任务的所需时间(t1)。黄色是下一个任务的截止时间(t2)。
令sum表示当前已经放入的任务的累积时间。我们发现sum+t1已经大于t2了,当前的任务已经放不下了。我们的做法分两种情况讨论:
1.之前所花时间最大的任务的所需时间大于当前任务的所需时间。
  (1).抛却时间最大的任务,当前任务可以完成。那我们就抛却那个任务,加入当前任务,结果一定不会更差(完成任务数不变,总时间提前)
  (2)抛却时间最大的任务,当前任务不能完成。不作处理。
2.之前所花时间最大的任务的所需时间小于等于当前任务的所需时间
  不作处理。

所以我们处理时另开一个堆记录之前完成任务的所需时间。

到这里这个贪心就出来了_(:з」∠)_ …

代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;

long long N,ans=0;
long long sum=0;
struct maple{
    long long t1,t2;
}line[150020];

bool cmp(maple a,maple b)
{
    return a.t2<b.t2;
}
priority_queue<long long> q;
int main()
{
    scanf("%I64d",&N);
    for(int i=1;i<=N;++i)
       scanf("%I64d%I64d",&line[i].t1,&line[i].t2);
    sort(line+1,line+N+1,cmp);
    for(int i=1;i<=N;++i)
    {
        if(sum+line[i].t1<=line[i].t2)
        {
            sum+=line[i].t1;
            q.push(line[i].t1);
        }
        else 
        {
            if(q.top()>line[i].t1)
            {
                sum-=q.top();
                if(sum+line[i].t1<=line[i].t2)
                {
                   q.pop();
                   sum+=line[i].t1;
                   q.push(line[i].t1);
                }
                else  sum+=q.top();
            }
        }
    }
    printf("%d",q.size());
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值