CODE[VS] 3304 水果姐逛水果街I(线段树求区间最大最小值)

题目描述 Description
水果姐今天心情不错,来到了水果街。
水果街有n家水果店,呈直线结构,编号为1~n,每家店能买水果也能卖水果,并且同一家店卖与买的价格一样。
学过oi的水果姐迅速发现了一个赚钱的方法:在某家水果店买一个水果,再到另外一家店卖出去,赚差价。
就在水果姐窃喜的时候,cgh突然出现,他为了为难水果姐,给出m个问题,每个问题要求水果姐从第x家店出发到第y家店,途中只能选一家店买一个水果,然后选一家店(可以是同一家店,但不能往回走)卖出去,求每个问题中最多可以赚多少钱。
输入描述 Input Description
第一行n,表示有n家店
下来n个正整数,表示每家店一个苹果的价格。
下来一个整数m,表示下来有m个询问。
下来有m行,每行两个整数x和y,表示从第x家店出发到第y家店。
输出描述 Output Description
有m行。
每行对应一个询问,一个整数,表示面对cgh的每次询问,水果姐最多可以赚到多少钱。
样例输入 Sample Input
10
2 8 15 1 10 5 19 19 3 5
4
6 6
2 8
2 2
6 3
样例输出 Sample Output
0
18
0
14
数据范围及提示 Data Size & Hint
0<=苹果的价格<=10^8
0 < n,m<=200000

思路:
最多赚多少钱肯定是求最大最小值呀╮(╯▽╰)╭
区间询问、nlogn、线段树没跑了
水果姐是不能回头的 我们一定最优的答案是在一个左区间找到了一个值 在对应的右区间找到了一个值使它们两个的差值是最大的 这就是最优解 不断去求区间最值 取max即可
最后,水果姐的行动方向是不定的,我们需要考虑查询的是否是否应反向

代码:

#include<iostream>
#include<cstdio>
using namespace std;
const int maxn = 200050;
typedef long long ll;
int n,m,num[maxn];
struct dc{
    int l,r;
    ll sum,add,min,max;
    ll ans1,ans2;
}tree[maxn<<2];
ll min(ll a,ll b)
{
    if(a > b) return b;
    return a;
}
ll max(ll a,ll b)
{
    if(a > b) return a;
    return b;
}
void up(int p)
{
    tree[p].sum = tree[p<<1].sum + tree[p<<1|1].sum;
    tree[p].max = max(tree[p<<1].max,tree[p<<1|1].max);
    tree[p].min = min(tree[p<<1].min,tree[p<<1|1].min);
    tree[p].ans1 = max(tree[p<<1|1].max - tree[p<<1].min,max(tree[p<<1].ans1,tree[p<<1|1].ans1));
    tree[p].ans2 = max(tree[p<<1].max - tree[p<<1|1].min,max(tree[p<<1].ans2,tree[p<<1|1].ans2));
}
void push(int p)
{
    tree[p<<1].sum += tree[p].add * (tree[p<<1].r - tree[p<<1].l + 1);
    tree[p<<1].add += tree[p].add;
    tree[p<<1|1].sum += tree[p].add * (tree[p<<1|1].r - tree[p<<1|1].l + 1);
    tree[p<<1|1].add += tree[p].add;
    tree[p].add = 0;
} 
void build(int p,int l,int r)
{
    tree[p].l = l;
    tree[p].r = r;
    if(l == r)
    {
        tree[p].min = tree[p].max = tree[p].sum = num[l];
        return ;
    }
    int mid = (l + r) >> 1;
    build(p<<1,l,mid);
    build(p<<1|1,mid+1,r);
    up(p);
}
void change(int p,int l,int r,int v)
{
    if(l <= tree[p].l && tree[p].r <= r)
    {
        tree[p].sum += v * (tree[p].r - tree[p].l +1);
        tree[p].max += v;
        tree[p].min += v;
        tree[p].add += v;
        return;
    }
    push(p);
    int mid = (tree[p].l + tree[p].r) >> 1;
    if(l <= mid ) change(p<<1,l,r,v);
    if(mid < r) change(p<<1|1,l,r,v);
    up(p);
}
ll ask_min(int p,int l,int r)
{
    if(l <= tree[p].l && tree[p].r <= r)
    {
        return tree[p].min;
    }
    push(p);
    int mid = (tree[p].l + tree[p].r) >> 1;
    ll ans = 21474836472333333;
    if(l <= mid) ans = min(ans,ask_min(p<<1,l,r));
    if(mid < r) ans = min(ans,ask_min(p<<1|1,l,r));
    return ans;

}
ll ask_max(int p,int l,int r)
{
    if(l <= tree[p].l && tree[p].r <= r)
    {
        return tree[p].max;
    }
    push(p);
    int mid = (tree[p].l + tree[p].r) >> 1;
    ll ans = 0;
    if(l <= mid) ans = max(ans,ask_max(p<<1,l,r));
    if(mid < r) ans = max(ans,ask_max(p<<1|1,l,r));
    return ans;
}
ll ask1(int p,int l,int r)
{
    if(l <= tree[p].l && tree[p].r <= r)
    {
        return tree[p].ans1;
    }
    push(p);
    int mid = (tree[p].l + tree[p].r) >> 1;
    ll ans = 0;
    if(l <= mid) ans = max(ans,ask1(p<<1,l,r));
    if(mid < r) ans = max(ans,ask1(p<<1|1,l,r));
    if(l <= mid && mid < r)
    ans = max(ans,ask_max(p<<1|1,mid + 1,r) - ask_min(p<<1,l,mid));
    return ans;
}
ll ask2(int p,int l,int r)
{
    if(l <= tree[p].l && tree[p].r <= r)
    {
        return tree[p].ans2;
    }
    push(p);
    int mid = (tree[p].l + tree[p].r) >> 1;
    ll ans = 0;
    if(l <= mid) ans = max(ans,ask2(p<<1,l,r));
    if(mid < r) ans = max(ans,ask2(p<<1|1,l,r)); 
    if(l <= mid && mid < r) 
    ans = max(ans,ask_max(p<<1,l,mid) - ask_min(p<<1|1,mid + 1,r)); 
    return ans;
}
int main()
{
    scanf("%d",&n);
    for(int i = 1;i <= n;i ++)
    scanf("%d",&num[i]);
    build(1,1,n);
    scanf("%d",&m);
    while(m --)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        ll ans;
        if(x < y) ans = ask1(1,x,y);
        else ans = ask2(1,y,x);
        printf("%lld\n",ans);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值