BZOJ 1036 [ZJOI2008] 数的统计 树链剖分

Description

  一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成 一些操作:
I. CHANGE u t : 把结点u的权值改为t
II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值
III. QSUM u v:询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身

Input

  输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有 一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output

对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input

4

1 2

2 3

4 1

4 2 1 3

12

QMAX 3 4

QMAX 3 3

QMAX 3 2

QMAX 2 3

QSUM 3 4

QSUM 2 1

CHANGE 1 5

QMAX 3 4

CHANGE 3 6

QMAX 3 4

QMAX 2 4

QSUM 3 4

Sample Output

4

1

2

2

10

6

5

6

5

16

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int SZ = 400010;

struct SGT
{
    int l, r;
    LL sum, maxx;
}sgt[SZ];
struct Tree
{
    int f, t;
}tree[SZ];
int size[SZ], first[SZ], nxt[SZ], fa[SZ], deep[SZ], son[SZ], num[SZ], tot;

void Build(int f, int t)
{
    tree[++tot] = (Tree){f, t};
    nxt[tot] = first[f];
    first[f] = tot; 
}

void DFS_1(int u, int f)
{
    fa[u] = f;
    deep[u] = deep[f] + 1;
    size[u] = 1; 
    for(int i = first[u]; i; i = nxt[i])
    {
        int v = tree[i].t;
        if(v == f) continue;
        DFS_1(v, u);
        size[u] += size[v];
        if(!son[u] || size[v] > size[son[u]]) son[u] = v;
    }
}

int top[SZ], inseg[SZ], intree[SZ], topa;

void DFS_2(int u, int topu)
{
    top[u] = topu;
    inseg[u] = ++ topa;
    intree[topa] = u;
    if(!son[u]) return ;
    DFS_2(son[u], topu);
    for(int i = first[u]; i; i = nxt[i])
    {
        int v = tree[i].t;
        if(v == son[u] || v == fa[u]) continue;
        DFS_2(v, v); 
    } 
}

void update(int now)
{
    sgt[now].sum = sgt[now << 1].sum + sgt[now << 1 | 1].sum;
    sgt[now].maxx = max(sgt[now << 1].maxx, sgt[now << 1 | 1].maxx);

}

void Build_Tree(int now, int l, int r)
{
    sgt[now].l = l; sgt[now].r = r;
    if(l == r)
    {
        sgt[now].sum = sgt[now].maxx = num[intree[l]];
        return ;
    } 
    int mid = (l + r) >> 1;
    Build_Tree(now << 1, l, mid);
    Build_Tree(now << 1 | 1, mid + 1, r);
    update(now);
} 

void Change(int now, int point, int value)
{
    if(sgt[now].l == sgt[now].r)
    {
        sgt[now].sum = value;
        sgt[now].maxx = value;
        return ;
    }
    int mid = (sgt[now].l + sgt[now].r) >> 1;
    if(point <= mid) Change(now << 1, point, value);
    if(point > mid)  Change(now << 1 | 1, point, value);
    update(now);
}

LL Ask_Max(int now, int l, int r)
{
    if(l <= sgt[now].l && sgt[now].r <= r)
        return sgt[now].maxx;
    int mid = (sgt[now].l + sgt[now].r) >> 1;
    LL maxn = -SZ;
    if(l <= mid) maxn = max(maxn, Ask_Max(now << 1, l, r));
    if(r > mid) maxn = max(maxn, Ask_Max(now << 1 | 1, l, r));
    return maxn;
}

LL Ask_Sum(int now, int l, int r)
{
    if(l <= sgt[now].l && sgt[now].r <= r)
        return sgt[now].sum;
    int mid = (sgt[now].l + sgt[now].r) >> 1;
    LL sum = 0;
    if(l <= mid) sum += Ask_Sum(now << 1, l, r);
    if(r > mid) sum += Ask_Sum(now << 1 | 1, l, r);
    return sum;
} 

LL Max(int l, int r)
{
    int fal = top[l], far = top[r];
    LL maxn = -SZ;
    while(fal != far)
    {
        if(deep[fal] < deep[far])
        {
            swap(l, r); swap(fal, far); 
        }
        maxn = max(maxn, Ask_Max(1, inseg[fal], inseg[l]));
        l = fa[fal]; fal = top[l];
    }
    if(deep[l] > deep[r]) swap(l, r);
    maxn = max(maxn, Ask_Max(1, inseg[l], inseg[r]));
    return maxn; 
} 

LL Sum(int l, int r)
{
    int fal = top[l], far = top[r];
    LL ans = 0;
    while(fal != far)
    {
        if(deep[fal] < deep[far]) swap(l, r), swap(fal, far);
        ans += Ask_Sum(1, inseg[fal], inseg[l]);
        l = fa[fal]; fal = top[l];
    }
    if(deep[l] > deep[r]) swap(l, r);
    ans += Ask_Sum(1, inseg[l], inseg[r]);
    return ans;
}

int main()
{
    int n;
    scanf("%d", &n);
    int  f, t;
    for(int i = 1; i < n; i++)
    {
        scanf("%d%d", &f, &t);
        Build(f, t);
        Build(t, f);
    }
    for(int i = 1; i <= n; i++)
        scanf("%d", &num[i]);
    DFS_1(1, 0);
    DFS_2(1, 1);
    Build_Tree(1, 1, n);
    int q;
    char op[10];
    int a, b;
    scanf("%d", &q);
    for(int i = 1; i <= q; i++)
    {
        scanf("%s", op);
        scanf("%d%d", &a, &b);
        if(op[0] == 'Q' && op[1] == 'M')
            printf("%lld\n", Max(a, b));
        else if (op[0] == 'Q' && op[1] == 'S')
            printf("%lld\n", Sum(a, b));
        else
            Change(1, inseg[a], b), num[a] = b;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 每行 $n$ 个整数表示棋盘上每个点的字。 输出格式 输出一个整数表示所有满足条件的路径中,所有点的权值和的最小值。 据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值