codevs 1992 聚会 最短路+SPFA优化+反向建边

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Loi_a/article/details/50966216

小S 想要从某地出发去同学k的家中参加一个party,但要有去有回。他想让所用的
时间尽量的短。但他又想知道从不同的点出发,来回的最短时间中最长的时间是多
少,这个任务就交给了你
输入描述 Input Description
第一行三个正整数n, m, k(n是节点个数,m是有向边的条数,k是参加聚会的地点
编号)( 1 ≤ n ≤ 1000 ,1 ≤ m ≤ 100,000)
第二行..m + 1行每行3个整数x,y,w 代表从x到y需要花w的时间 0 < w <= 100

这个题数据水到不行,n==1000
反向建边 加SPFA优化
复杂度n log n

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
deque<int> q;
struct jiantu
{
    int x,y,w;
}jt[100010];
struct bian
{
    int f,t,d;
}b[100010];
int tot=1;
int first[1005],nxt[100010];
int dis1[1005],dis2[1005];
int inf=21474836;
bool use[1005];
void build(int f,int t,int d)
{
    b[++tot].f=f;
    b[tot].t=t;
    b[tot].d=d;
    nxt[tot]=first[f];
    first[f]=tot;
}
void spfa(int k)
{
    q.push_front(k);
    use[k]=1;
    dis1[k]=0;
    int dq,v;
    while(!q.empty())
    {
        dq=q.front();
        q.pop_front();
        use[dq]=0;
        for(int i=first[dq];i;i=nxt[i])
        {
            v=b[i].t;
            if(dis1[v]>dis1[dq]+b[i].d)
            {
                dis1[v]=dis1[dq]+b[i].d;
                if(!use[v])
                {
                    if(!q.empty()&&dis1[v]<dis1[q.front()])
                        q.push_front(v);
                    else
                        q.push_back(v);
                    use[v]=1;
                }
            }
        }
    }
}
int main()
{
    int n,m,k;
    scanf("%d%d%d",&n,&m,&k);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&jt[i].x,&jt[i].y,&jt[i].w);
        build(jt[i].x,jt[i].y,jt[i].w);
    }
    for(int i=1;i<=n;i++)
        dis1[i]=inf;
    spfa(k);
    for(int i=1;i<=n;i++)
    {
        dis2[i]=dis1[i];
        dis1[i]=inf;
    }
    memset(b,0,sizeof(b));
    memset(nxt,0,sizeof(nxt));
    memset(first,0,sizeof(first));
    for(int i=1;i<=m;i++)
        build(jt[i].y,jt[i].x,jt[i].w);
    spfa(k);
    int ans=0;
    for(int i=1;i<=n;i++)
    {
        if(dis1[i]!=inf&&dis2[i]!=inf)
            ans=max(ans,dis1[i]+dis2[i]);
    }
    printf("%d",ans);
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页