【问题描述】
世界上没有什么比卖的这么贵的弹丸三还令人绝望的事了,所以便有了这么一道题。定义f(x)为满足(a× b)|x的有序正整数对(a ,b)的个数。现在给定x,求![]()
【输入格式】
一行一个整数N。
【输出格式】
一行一个整数代表答案。
【样例输入】
6
【样例输出】
25
【数据范围与规定】
对于30%的数据, 1 ≤ x ≤ 100。
对于60%的数据, 1 ≤ x≤ 1000。
对于100%的数据, 1 ≤ x≤ 10^11。
题意就是给定一个数字x,问存在多少个有序数对(a,b),满足x%(a*b)=0。
枚举一个c 即为 a*b*c<=x 。因为题目中要求的是求1—~n的和。对于(a,b,c)如果a,b,c全都相同,则只有一种情况,如果a,b,c中有两个一样(这里假设为a,b相同),那就有(a,a,c),(a,c,a),(c,a,a)三种情况,如果a,b,c全都不一样,那么就是全排列6种情况。我们对这些分情况来求即可。
我们不妨让a
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
int main()
{
ll n,ans=0,now=0;
scanf("%lld",&n);
for(ll i=1;i*i<=n;i++)
{
now+=n/(i*i);
ll s=n/i;
if(i*i<=s) ans++,now--;
}
ans+=now*3,now=0;
for(ll i=1;(i*i)<=(n/i);i++)
{
ll s=n/i;
for(ll j=i+1;(j*j)<=s;j++)
now+=n/(i*j)-j;
}
ans+=6*now;
printf("%lld\n",ans);
return 0;
}