题目描述
saruka有一座大大的城堡!城堡里面有n个房间,每个房间上面都写着一个数字p[i]。有一天,saruka邀请他的小伙伴LYL和MagHSK来城堡里玩耍(为什么没有妹子),他们约定,如果某一个人当前站在i号房间里,那么下一步他就要去p[i]号房间,在下一步就要去p[p[i]]号房间。
为了增加趣味性,saruka决定重新书写一下每个房间的p[i],以满足:
<1>如果从编号为1-k的某个房间走,按照规则走,必须能走回1号房间。特别的,如果从1号房间开始走,也要走回1号房间。(至少走一步,如果p[1] = 1,从1走到1也算合法)
<2>如果从编号大于k的房间开始,按照规则走,一定不能走到1号房间。
saruka想知道,一共有多少书写p[i]的方案可以满足要求?
输入输出格式
输入格式:
共一行两个数字n,k,含义如题。
输出格式:
一个数字,表示合法的方案数。答案对10 ^ 9 + 7取模。
输入输出样例
输入样例#1:
5 2
输出样例#1:
54
输入样例#2:
7 4
输出样例#2:
1728
说明
1 <= n <= 10 ^ 18
1 <= k <= min(8,n)
思路:
对于k小于等于8,我们可以暴搜提前处理出前k个点所有可能的答案,剩余的n-k个点的答案种数为m^m,需用快速幂。
最后将前k个点的答案与剩下n-k个点的答案相乘。
题解:
#include<iostream>
#include<cstdio>
using namespace std;
const long long mod=1000000000+7;
long long a[9]={0,1,2,9,64,625,7776,117649,2097152};
long long ksm(long long x,long long y)
{
if(y==0)
{
return 1;
}
long long ans=ksm(x,y/2);
ans=((ans%mod)*(ans%mod))%mod;
if(y%2==1)
{
ans=((x%mod)*(ans%mod))%mod;
}
return ans;
}
int main()
{
long long n,k;
scanf("%lld%lld",&n,&k);
long long m=n-k;
printf("%lld",((a[k]%mod)*(ksm(m,m)%mod))%mod);
return 0;
}
暴搜:
#include<iostream>
#include<cstdio>
using namespace std;
int a[10];
int ans=0;
int n;
int ddfs(int x,int step)
{
if(step>n)
{
return 0;
}
if(x==1)
{
return 1;
}
ddfs(a[x],step+1);
}
void check()
{
bool flag=1;
for(int i=1;i<=n;i++)
{
if(!ddfs(a[i],0))
{
flag=0;
}
}
if(flag)
{
ans++;
}
}
void dfs(int x)
{
if(x>n)
{
check();
return;
}
for(int i=1;i<=n;i++)
{
a[x]=i;
dfs(x+1);
}
}
int main()
{
cin>>n;
dfs(1);
cout<<ans;
return 0;
}