【人工智能导论】概念整理

人工智能概念

强人工智能:比人类更聪明的机器
弱人工智能:包含基础的,特定场景下的角色型任务
如何看待我们现在出现的人工智能产品?
近期目标:研究如何使计算机去做那些靠人智力才能做的工作
最终目标:探讨智能形成的基本机理,研究利用自动机模拟人的思维过程
你觉得人工智能未来重点方向或研究内容是什么?怎么达到?
图灵测试:测试机器能否表现出与人一样的智力水准
通过了如何?
三大学派,成果

  • 符号主义
    认知的基元是符号,认知过程就是符号运算/推理,智能行为是充要条件是物理符号系统。
    成果:人工定理证明、人工智能语言LISP、鲁滨逊归结原理、专家系统
  • 连接主义
    思维的基元是神经元,思维过程是神经元的连接活动。
    成果:Hopfield网络模型、BP网络
  • 行为主义
    它认为人工智能起源于控制论,智能取决于感知与行为,取决于对外部复杂环境的适应。
    成果:布鲁克斯研制的六脚机器虫

确定性知识系统

有格式的数据经过处理、解释过程会形成信息,有关的信息关联到一起,经过处理过程形成知识

谓词逻辑

基于断言:一个陈述句就是一个断言
命题由谓词表示,它由谓词名和个体组成。一般形式为: P ( x1,x2,…,xn )
若xi都是个体常量、变元或函数,则称P为一阶谓词,若xi又是一阶谓词,则称P为二阶谓词。

优缺点

优点:自然、明确、精确、灵活、模块化
缺点:知识表示能力差、知识库管理困难、存在组合爆炸、系统效率低

自然演绎推理

从一组已知为真的事实出发,直接运用经典逻辑的推理规则推出结论。
image.png
image.png
image.png
image.png

产生式表示法

基本形式

可表示的知识种类

  • 事实
  • 规则
  • 上述两者的不确定性度量
    基本形式
  • P—>Q  或者 IF P THEN Q
  • P是产生式前提,Q是一组结论和操作

规则的表示方法

确定性规则

  • P—>Q
  • IF P THEN Q
    不确定性规则
  • P—>Q(可信度)
  • IF P THEN Q (可信度)

事实的表示方法

确定性事实

  • 断言一个语句变量的值或是多个语言变量间关系的陈述句
  • 三元组
    (对象,属性,值)
    (关系,对象1,对象2)
    例:老李年龄是40岁 (Li,Age,40)
    老李和老张是朋友 (Friend,Li,Zhang)
    不确定性事实
  • 四元组
    (对象,属性,值,可信度)
    (关系,对象1,对象2,可信度)
       例(Li,Age,40,0.8)
         (Friend,Li,Zhang,0.1)

产生式系统

把一组产生式放在一起,一个产生式的结论可以供另一个产生式作为已知事实使用,以求得问题的解,这种系统称为产生式系统
image.png
综合数据库:用于存放输入的事实、从外部数据库输入的事实、中间结果、最后结果
规则库:描述某领域内知识的产生式集合
控制系统:包含推理方式和控制策略

优缺点

优点:清晰性、模块性、自然性
缺点:效率不高、不能表示结构化知识

例题

image.png
image.png
image.png
image.png
image.png
image.png
image.png

语义网

语义网是通过概念及其语义关系来表达知识的一种网络图。 它是一个代标注的有向图

  • 节点用来表示各种概念、事物、属性、动作、状态等。
  • 弧是有方向,用来体现节点间的主次关系。
  • 弧上的标注用来表示节点间的语义联系或语义关系。
    基本网元
  • 语义网络中最基本的语义单元称为语义基元,可由一个三元组表示:
  • (节点1,弧,节点2)
  • 基本网元是一个语义基元对应的有向图,是语义网络中最基本的结构单元
    image.png

语义关系

  • 实例关系: ISA
    体现的是“具体与抽象”的概念,含义为“是一个”,表示一件事物是另一件事物的一个实例。
  • 分类关系: AKO
    也称泛化关系,体现的是“子类与超类”的概念,含义为“是一种”,表示一个事物是另一个事物的一种类型。
  • 成员关系:A-Member-of
    体现的是“个体与集体”的关系,含义为“是一员”,表示一个事物是另一个事物的一个成员
  • 属性关系:Have Can
    指事物和其属性之间的关系。常用的有:
    Have:含义为“有”,表示一个结点具有另一个结点所描述的属性
    Can:含义为 “能”、“会”,表示一个结点能做另一个结点的事情
  • 包含关系(聚类关系)
    指具有组织或结构特征的“部分与整体”之间的关系
    Part-of :含义为“是一部分”,表示一个事物是另一个事物的一部分。
  • 时间关系
    指不同事件在其发生时间方面的先后次序关系。常用的时间关系有:   
    Before:含义为“在前”
    After: 含义为“在后
  • 位置关系
    指不同事物在位置方面的关系。常用的有:
    Located-on:含义为“在…上面”
    Located-under:含义为“在…下面”
    Located-at:含义为“在…”
  • 相近关系
    指不同事物在形状、内容等方面相似或接近。常用的相近关系有:
    Similar-to:含义为“相似”
    Near-to:含义为“接近”

示例

image.png
image.png
image.png

动作和情况的表示

增加情况和动作结点的描述方法
事件节点由一些向外引出的弧来指出事件行为及发出者与接受者
动作结点由一些向外引出的弧来指出动作的主体与客体
常河给江涛一个优盘
image.png

推理

  • 语义网络表示的问题求解系统由两部分构成
    语义网知识库
    求解问题的解释程序——推理机
    推理方法
  • 匹配:在知识库的语义网络中寻找与待求解问题相符的语义网络模式
  • 继承:把对事物的描述从抽象节点传递到具体节点,通过继承得到所需要的一些属性。

优缺点

优点:结构性、自然性、联想性
缺点:非严格性、复杂性

框架表示

框架是人们认识事物的一种通用的数据结构形式
对于一个框架,当人们把观察或认识到的具体细节填入后,就得到了该框架的一个具体实例
框架由若干个槽组成,槽可以由若干个侧面组成。一个侧面用来描述相应属性的一个方面。槽和侧面所具有的属性值称为槽值和侧面值。
image.png
槽值可以是数值、字符串、布尔值或是动作、过程甚至是框架名

示例

image.png
image.png

优缺点

优点:结构性、自然性、深层性、继承性
缺点:缺乏框架的形式理论、缺乏过程性知识表示、请晰性难以保证

归结原理

使用反证法,欲证明P →Q,只要证明P∧~Q  <=>  F
前束形范式:一个谓词公式的所有量词均非否定地出现在公式的最前面,且它的辖域一直延伸到公式之末,同时公式中不出现连接词→及  ↔ 。
image.png
斯克林范式:在前束范式的首标中不出现存在量词,即从前束范式中消去全部存在量词所得的公式
image.png

化子句集

image.png

  1. 利用连接词化归律消去谓词公式中的条件和双条件连接词。
    image.png
    image.png

  2. 利用等价关系把“~”移到紧靠谓词的位置上。image.png

  3. 重新命名,使不同量词的约束变元名字不同
    image.png

  4. 消去存在量词
    image.png
    当x在y前面时,认为x约束y,可以将y换位f(x),无约束时可以换成常量

  5. 把全称量词移到公式最左边
    image.png

  6. 利用等价关系将公式化为Skolem标准形
    image.png

  7. 去掉全称量词
    image.png

  8. 对变元更名,使不同子句的变元不同名
    image.png

  9. 消去合取词,即得子句集
    image.png

鲁滨逊归结原理

由谓词公式转化为子句集的过程可以看出,在子句集中子句之间是合取关系,其中只要一个子句不可满足,则子句集不可满足

归结式

image.png

置换

置换是一个形如{ t1/x1, t2/x2, …, tn/xn  }的有限集合
ti是项,xi是变元,ti/xi表示用ti替换xi。
ti≠xi,xi≠ xj(i ≠ j),i,j=1,2,3…,n
xi不可循环出现在tj中。
不含任何元素的置换称为空置换,以ε表示
eg:{ a/x, f(b)/y, w/z }、{ g(a)/x, f(b)/y }是一个置换,但{ g(y)/x, f(x)/y }不是置换。

合一

设有公式集:F={  F1, F2, …, Fn  },若存在一个置换θ,使得
F1θ= F2θ= … =Fnθ
则称θ为F的一个合一置换,且称F1, F2, …, Fn 是可合一的。

最一般合一

设σ是公式集F的一个合一,如果对于F的任何一个合一θ,都存在替换λ,使得:θ=σ·λ
则称σ是F的最一般合一

定理证明

使用反证法,合取上~G。证明思路见归结原理

例题

任何通过历史考试并获得奖学全的人是快乐的。任何肯学习或幸运的人可以通过所有考试。John不学习但很幸运。任何人只要是幸运的就能获得奖学金。求证:John是快乐的。
image.png
image.png
image.png
image.png

问题求解

写出问题P()
子句集中引入~PVANSWER(),归结后的ANSWER中的值即为解

例题

任何兄弟都有同一个父亲,John和Peter是兄弟,且John的父亲是David,问Peter的父亲是谁?
image.png
image.png
image.png

例题

image.png

image.png

智能搜索技术

搜索:依靠经验,利用已有知识,根据问题的实际情况,不断寻找可利用知识,从而构造一条代价最小的推理路线,使问题得以解决的过程称为搜索
智能搜索:是指可以利用搜索过程得到的中间信息来引导搜索项最优方向发展的算法、
image.png

状态空间法

状态:表示问题解法中每一步问题状况的数据结构
算符:把问题从一种状态变换为另一种状态的手段
状态空间方法:基于解答空间的问题表示和求解方法,它是以状态和算符为基础来表示和求解问题的。
问题的状态空间:是一个表示该问题全部可能状态可用算符的集合,它包含三种说明的集合,即三元状态(S,F,G)。
问题的解:从问题的初始状态集,经过一系统列的算符运算,到达目标状态,所经过算符的序列构成一个问题的解

OPEN/CLOSE表

OPEN表用于存储尚未探索的状态。这些状态是已知的,但尚未经过评估或扩展(即未检查这些状态是否为目标状态或未探索其可达的下一状态)。
CLOSE表用于存储已经探索过的状态。一旦一个状态从OPEN表中移除并进行了扩展,它就会被加入到CLOSE表中。

启发式搜索

启发信息:用于指导搜索过程且与具体问题求解有关的控制信息称为启发信息
估价函数:用来描述节点重要程度的函数f(x)=g(x)+h(x)
g(x)为初始节点S0到节点x已实际付出的代价,h(x)是从节点x到目标节点Sg的最优路径的估计代价。h(x)被称为启发函数

A算法

在状态空间搜索中,如果每一步都利用估价函数f(n)=g(n)+h(n)对Open表中的节点进行排序,则称A算法。

全局择优

将新扩展的节点放进OPEN表后对OPEN表内全部节点进行排序选出下一个节点

局部择优

只对新扩展的节点进行排序选择下一个节点

A*算法

定义最优路径f*(x)=g*(x)+h*(x),存在估价函数f(x)=g(x)+h(x)
g是g*的估计 ,h是h*的估计
g(x)是对最小代价g*(x)的估计,且g(x)>0,g(x)>=g*(x)
h(x)为h*(x)的下界,即对所有的x存在h(x)≤h*(x)

例题

有一农夫带一条狼,一只羊和一框青菜与从河的左岸乘船倒右岸,但受到下列条件的限制:
(1) 船太小,农夫每次只能带一样东西过河;
(2) 如果没有农夫看管,则狼要吃羊,羊要吃菜。
请设计一个过河方案,使得农夫、浪、羊都能不受损失的过河,画出相应的状态空间图
image.png
设有如下结构的移动将牌游戏:

BBWWE
其中,B表示黑色将牌,W表是白色将牌,E表示空格。游戏的规定走法是:
(1) 任意一个将牌可移入相邻的空格,规定其代价为1;
(2) 任何一个将牌可相隔1个其它的将牌跳入空格,其代价为跳过将牌的数目加1。
游戏要达到的目标什是把所有W都移到B的左边。对这个问题,请定义一个启发函数h(n),并给出用这个启发函数产生的搜索树。你能否判别这个启发函数是否满足下解要求?再求出的搜索树中,对所有节点是否满足单调限制?

image.png

问题归约法

问题归约:把一个复杂问题分解或变换为一组本原问题的过程称作问题归约。
本原问题:不能(或不需要)再进行分解或变换,且可以直接解答的子问题。
将一个复杂的问题分解为几个子问题的过程称为分解。可用与树表示
将一个复杂的问题变换成若干个等价的问题的过程称为等价变换。可用或树表示

与或树

image.png
在与或树中没有子节点的节点称为端节点,本原问题所对应的节点称为终叶节点。显然,终叶节点一定是端节点,但端节点不一定是终止节点。

例题

image.png

解树的代价

image.png
image.png
image.png

例题

image.png
image.png
image.png

希望树

在有序搜索中,应选择那些最有希望成为最优解树一部分的节点进行扩展。我们称这节点构成的树为希望树。

  • 初始节点S0在希望树中。
  • 如果节点x在希望树中,则:
  • 如果x是或节点,且其子节点依次为y1,y2,…,yn,则具有下述值的子节点也在希望树中:
    min{c(x,yi)+g(yi)}     1≤i≤n
  • 若x是与节点,则其所有子节点都在希望树中。
  • 扩展到某个节点时如果是或,则生成左右两个子节点后再继续考虑。

有序搜索

博弈树

己方的各种攻击方案为“或”关系,而对方的应着方案为“与”关系。描述博弈过程的“与/或”树称为博弈树。

极大极小分析法

根据所求解问题的特殊信息设计合适的估价函数,计算当前博弈树中所有端节点的得分,该分数称为静态估价值。根据端节点的估值推算出其父节点的分数。

  • 若父节点为“或”节点,则其分数等于其所有子节点分数的最大值
  • 若父节点为“与”节点,则其分数等于其所有子节点分数的最小值。
  • 计算出的父节点的分数值称为倒推值。
  • 如果一个方案能获得较大的倒推值,则它就是当前最好的行动方案。
    image.png

α-β剪枝

α:或节点下的最大值
β:与节点下的最小值
β剪枝:如果“或”节点x的α值不能降低其父节点的β值,则停止搜索x的其余子节点,使x的倒推值为α
image.png
α剪枝:如果“与”节点x的β值不能升高其父节点的α值,则停止搜索节点x的其余子节点,并使x的倒推值为β
image.png

例题

image.png
image.png

蒙特卡洛算法

  1. 选择
    从根节点R开始,选择子节点的过程,该过程基于某些规则,例如UCB
    节点中的信息为胜利次数/总的访问次数
    image.png

  2. 扩展
    一旦到达某个节点后无法再根据已知信息选择子节点时,创建一个或多个可能的未探索的子节点,并选择其中之一
    image.png

  3. 模拟
    从新的子节点开始,使用随机的方式进行模拟或玩一场“快速游戏”直到游戏结束,然后更新新节点中的状态
    image.png

  4. 回溯
    更新从选中的子节点到根节点路径上的所有节点的信息
    image.png

MCTS不断重复这四个步骤,通过这种方式可以逐渐构建出一棵以统计信息为基础的搜索树,最终选择最优的移动。

UCB 上限置信区间策略

image.png
vi 是节点的估计值,ni 是节点被访问的次数,N 是其父节点已经被访问的总次数,C 是可调整参数。

image.png
Xj 是节点的估计值,这是为胜利次数/总的访问次数(如3/6),nj 是节点被访问的次数,而 n 则是其父节点已经被访问的总次数。C 是可调整参数
C是平衡因子,其决定着在选择时偏重探索还是利用。C 越大就越偏向于探索(随机效果),C 越小就越偏向于利用(目前胜率效果)。

例题

image.png
image.png
image.png

遗传算法

种群:初始给定的解集
个体:单个解
染色体:单个解的编码
适应度函数:对种群的所有个体应用适应度函数,用于选择
遗传操作:从旧种群迭代到新种群的操作
遗传操作包括以下三步:

  • 选择
  • 交叉
  • 变异
算法描述
  1. 选择编码策略:将问题搜索空间中每个可能的点用相应的编码策略表示出来,形成染色体
  2. 定义遗传策略:包括种群规模N,交叉、变异方法,以及选择概率Pr、交叉概率Pc、变异概率Pm等遗传参数
    image.png
    选择:轮盘赌算法
    交叉:根据给定的点将染色体截段,将两条染色体部分交换
    突变:根据给定的突变位点,将编码中的该位点转换,如二进制则取反,十进制取随机数
例题

image.png

不确定性推理

概述

知识的不确定性表示

概率,在[0,1]区间取值,越接近于0越假,越接近于1越真
可信度,在[-1,1]区间取值,大于0接近于真,小于0接近于假,等于0为无关
隶属度,在[0,1]区间取值,越接近于0隶属度越低,反之越高

证据不确定性的表示

证据的类型:基本证据,组合证据
表示方法:概率,可信度,隶属度等
基本证据:常与知识表示方法一致,如概率,可信度,隶属度等
组合证据:

  • 组合方式:析取的关系,合取的关系。
  • 计算方法:基于基本证据最大最小方法,概率方法,有界方法等。

可信度推理

可信度是指人们根据以往经验对某个事物或现象为真的程度的一个判断,或者说是人们对某个事物或现象为真的相信程度。

C-F模型

知识是用产生式规则表示的,其一般形式为:
IF   E   THEN   H  (CF(H, E)) 
其中,E是知识的前提条件;H是知识的结论;CF(H, E)是知识的可信度[-1,1]。
eg:IF   发烧    AND  流鼻涕   THEN   感冒(0.8)
同一前提E,若支持若干个不同的结论Hi(i=1,2,…,n),则image.png

证据

CF(E)=0.6: E的可信度为0.6
证据E的可信度取值范围:[-1,1] 。 
静态强度CF(H,E):知识的强度,即当 E 所对应的证据为真时对 H 的影响程度。 
动态强度 CF(E):证据 E 当前的不确定性程度。

组合证据

合取
E=E1 AND E2 AND … En时,
若已知CF(E1),CF(E2),…,
           则CF(E)=min{CF(E1), CF(E2), … ,CF(En)}
析取
E=E1 OR  E2  OR … En时,
若已知CF(E1),CF(E2),…,
           则CF(E)=max{CF(E1), CF(E2), … ,CF(En)}

不确定性的更新公式

CF(H)=CF(H, E)×max{0, CF(E)}
    若CF(E)<0,则
           CF(H)=0
即该模型没考虑E为假对H的影响。
    若CF(E)=1,则
           CF(H)=CF(H,E)
即规则强度CF(H,E)实际上是在E为真时,H的可信度

结论不确定性的合成

当有多条知识支持同一个结论,且这些知识的前提相互独立,结论的可信度又不相同时,可利用不确定性的合成算法求出结论的综合可信度。

设有知识:IF  E1   THEN   H  (CF(H, E1))
     IF  E2   THEN   H  (CF(H, E2))
则结论H 的综合可信度可分以下两步计算:
         CF1(H)=CF(H, E1) ×max{0, CF(E1)}
         CF2(H)=CF(H, E2) ×max{0, CF(E2)}
image.png

例题

设有如下一组推理规则:
r1:IF E1                THEN E2 (0.6)
r2:IF E2 AND E3  THEN E4 (0.7)
r3:IF E4               THEN H  (0.8)
r4:IF E5               THEN H  (0.9)
且已知CF(E1)=0.5,CF(E3)=0.6, CF(E5)=0.7。求CF(H)=?
image.png

概率推理

贝叶斯网络

拓扑结构是一个有向无环图。
每个节点代表一个变量,可以是任何可以量化的事物,例如天气情况、疾病症状或者机器故障的概率。节点间的有向边(箭头)则代表这些变量之间的概率依赖关系。
每个节点都伴随着一个条件概率表,这个表描述了在给定父节点特定值的情况下,该节点取特定值的概率。
image.png

全联合概率分布表示

设X={ X1, X2, …, Xn }为任何随机变量集,其全联合概率分布是指当对每个变量取特定值时
xi(i=1,2,…,n)时的合取概率,即P( X1=x1∧X2=x2∧…∧Xn=xn )其简化表示形式为
P( x1,x2,…,xn )。
由全联合概率分布,再重复使用乘法法则
        P( x1,x2,…,xn )= P( xn | xn-1,x n-2,…,x1)P(xn-1,xn-2,…,x1)
可以把每个合取概率简化为更小的条件概率和更小的合取式,直至得到如下全联合概率分布表示:P(x1,x2,…,xn )
   = P( xn | xn-1,x n-2,…,x1 )P(xn-1| xn-2, xn-3,…,x1)…P(x2|x1)P(x1)
   =   image.png
我们用par(Xi)表示Xi的所有父节点的相应取值xi,P(Xi | par(Xi))是节点Xi的一个条件概率分布函数,则对X的所有节点,应有如下联合概率分布:
          P( x1, x2, …, xn )=image.png

条件依赖关系表示

贝叶斯网络能实现简化计算的最根本基础是条件独立性,即一个节点与它的祖先节点之间是条件独立的。
两个等价的条件独立关系的判别准则:
(1) 给定父节点,一个节点与非其后代的节点之间是条件独立的。   
(2) 给定一个节点,该节点与其父节点、子节点和子节点的父节点一起构成了一个马尔科夫覆盖,则该节点与马尔科夫覆盖以外的所有节点之间都是条件独立的。

贝叶斯网络的构造

(1) 首先建立不依赖于其它节点的根节点,并且根节点可以不止一个。
(2) 加入受根节点影响的节点,并将这些节点作为根节点的子节点。此时,根节点已成为父节点。
(3) 进一步建立依赖于已建节点的子节点。重复这一过程直到叶节点为止。
(4) 对每个根节点,给出其先验概率;对每个中间节点和叶节点,给出其条件概率表。

例题

image.png
对图所示的贝叶斯网络,若假设已经产生了焦虑情绪,但实际上并未碰见难题,也未遇到干扰,请计算思维迟缓情绪波动的概率。
有:
        P(c∧e∧a∧﹁d∧﹁i )
           =P(c | a)P(e | a)P(a |﹁d∧﹁i)P(﹁d)P(﹁i)
           =0.8×0.9×0.1×0.85×0.95
           =0.05814

贝叶斯网络推理

利用贝叶斯网络模型进行计算的过程,其基本任务就是要在给定一组证据变量观察值的情况下,利用贝叶斯网络计算一组查询变量的后验概率分布。

image.png
X表示查询变量;s表示一个观察到的特定事件;Y表示隐含变量集{y1,  y2,  …,  ym},即无关的变量,在这里∑将其消除;α是归一化常数,用于保证相对于X所有取值的后验概率总和等于1。
应用贝叶斯网络概率分布公式
P( x1, x2 ,…, xn )=image.png
来改写上式

例题

在例题所示的贝叶斯网络中,若已观察到的一个事件是“思维迟缓”和“情绪波动”,现在要询问的是“碰见难题”的概率是多少。这是个贝叶斯网络推理问题,其查询变量为D,观察到的特定事件s={c, e},即求P( D| c, e )。
按照贝叶斯网络推理,可化为:image.png其中,α是归一化常数,D取d和﹁d,应用贝叶斯网络的概率分布公式:
         P( x1, x2, …, xn )=image.png
对D的不同取值d和﹁d分别进行处理
D取d时:
image.png
D取﹁d时:
image.png
取α=1/(0.047+0.088)=1/0.135。因此有
        P(D | c, e)= α(0.047, 0.088)=( 0.348, 0.652) 归一化
    即在思维迟缓和情绪波动都发生时,遇到难题的概率是P(d | c, e)= 0.348,不是因为遇到难题的概率是P(﹁d | c, e)= 0.652

神经网络基础

基础

分类:按结构层次

  • 浅层网络:感知器网络、BP网络、Hopfield网络
  • 深层网络:受限波尔茨曼机网络、深度信念网络、卷积神经网络
    浅层学习方法是单层感知器学习算法,该学习算法只能解决那些线性可分问题
    深层神经网络的深度学习算法可以把神经网络的隐含层增加到数十层、数百层。因此,深度学习具有很强的非线性性能

MP神经元模型

image.png
image.png

互联结构

前馈网络

只包含前向联结

单层前馈网络

仅含输入层和输出层,且只有输出层的神经元是可计算节点
image.png
输出:
image.png
权值矩阵W:
image.png

多层前馈网络

除拥有输入、输出层外,还至少含有一个、或更多个隐含层的前向网络
多层前馈网络的输入层的输出向量是第一隐含层的输入信号,而第一隐含层的输出则是第二隐含层的输入信号,以此类推,直到输出层。
image.png
代表:BP网络

反馈网络

可含有反馈联结

单层反馈网络

不拥有隐含层的反馈网络
代表:Hopfield网络

多层反馈网络

拥有隐含层的反馈网络

典型模型

感知器模型 Perceptron

感知器的拓扑结构是一种分层前向网络。它包括单层感知器和多层感知器。
单层感知器
单层感知器是一种只具有单层可调节连接权值神经元的前向网络,这些神经元构成了单层感知器的输出层,是感知器的可计算节点。
在单层感知器中,每个可计算节点都是一个线性阈值神经元。当输入信息的加权和大于或等于阈值时,输出为1,否则输出为0或-1。
单层感知器的输出层的每个神经元都只有一个输出,且该输出仅与本神经元的输入及联接权值有关,而与其他神经元无关。
多层感知器
多层感知器是通过在单层感知器的输入、输出层之间加入一层或多层处理单元所构成的
多层感知器的输入与输出之间是一种高度非线性的映射关系,因此,多层感知器可以实现非线性可分问题的分类。例如,对“异或”运算,用多层感知器即可解决。

前向传播模型 BP

BP网络的网络拓扑结构是多层前向网络。在BP网络中,同层节点之间不存在相互连接,层与层之间多采用全互连方式,且各层的连接权值可调。
image.png
正向传播:输入模式经隐层到输出层,最后形成输出模式
反向传播:从输出层开始逐层将误差传到输入层,并修改各层联接权值,使误差信号为最小的过程

反馈网络模型 离散Hopfield

image.png
由该连接权值所构成的连接矩阵是一个零对角的对称矩阵。
虽然神经元自身无连接,但由于每个神经元都与其他神经元相连:即每个神经元的输出都将通过突触连接权值传递给别的神经元,同时每个神经元又都接受其他神经元传来的信息。这样对每个神经元来说,其输出经过其他神经元后又有可能反馈给自己,因此Hopfidld网络是一种反馈神经网络 。

深度卷积神经网络 DCNN

深度卷积神经网络的学习过程即是对卷积神经网络的训练过程,它由计算信号的正向传播过程和误差的反向传播过程所组成
image.png

卷积

从左上角开始移动到右下角,每次移动一步,每移动一步都要将滤波器与其在原图像中所对应位置的子图像做卷积运算,最终得到卷积后的图像,即特征图
image.png

池化

从特征图的左上角开始,按照池化窗口,先从左到右,然后再从上向下,不重叠地依次扫过整个图像,并同时利用子采样方法进行池化计算。
eg:一个8*8的输入图像,若采用大小为2*2的池化窗口对其进行池化操作,就意味着原图像上的4个像素将被合并为1个像素,原卷积层中的特征图经池化操作后将缩小为原图的1/4。
常见池化方法:最大池化法、平均池化法、概率矩阵池化法、

最大池化

image.png

平均池化

image.png

反向传播

卷积神经网络的反向传播分为两种

  • 误差的反向传播:与当前网络层的类型有关,即卷积层、池化层、全连接层的误差反向传播方法不同
  • 参数的反向调整:一般通过梯度计算来实现

LeNet5

用于手写体数字和字母的识别
image.png

  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值