前缀和、差分、线段树与树状数组

树状数组

  • 时间复杂度:O(n)
  • 适用于:单点更新,区间查询

理解

C[1] = C[0001] = A[1];
C[2] = C[0010] = A[1]+A[2];
C[3] = C[0011] = A[3];
C[4] = C[0100] = A[1]+A[2]+A[3]+A[4];
C[5] = C[0101] = A[5];
C[6] = C[0110] = A[5]+A[6];
C[7] = C[0111] = A[7];
C[8] = C[1000] = A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

即:

  • C [ i ] = A [ i − 2 k + 1 ] + A [ i − 2 k + 2 ] + ⋯ + A [ i ] ; C[i]=A[i-2^k+1]+A[i-2^k+2]+\dots+A[i]; C[i]=A[i2k+1]+A[i2k+2]++A[i];
  • k k k i i i 的二进制中从最低位到高位连续零的长度。
  • 2 k 2^k 2k可通过 i & − i i\&-i i&i获得。

补码为原码取反后加1,如果将补码+1进位,那么最末尾的1和原码最右边的1一定是同一个位置

lowbit

inline int lowbit(x){
    return x&(-x);
}

单点更新

void update(int *arr,int index,int diff,int len){
    /*
    * arr:树状数组
    * index:待更新的位置
    * diff:改变的值
    * len:树状数组长度
    */
    for(int i=index;i<=len;i+=lowbit(i))
        arr[i] += diff;
}

区间查询

int getsum(int *arr,int x){
    /*
    * arr:树状数组
    * x:求从1到x的和
    */
    int ans = 0;
    for(int i=x;i;i-=lowbit(i))
        ans += arr[i];
    return ans;
}

样例

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>

using namespace std;

int lowbit(const int t) {
    return t & (-t);
}

void insert(int t, int d) {
    while (t <= n){
        a[t] += d;
        t = t + lowbit(t);
    }
}

int getSum(int t) {
    int sum = 0;
    while (t > 0){
        sum += a[t];
        t = t - lowbit(t);
    }
    return sum;
}


int main() {
    int t, k, d;
    scanf("%d", &t);
    k= 1;
    while (t--){
        memset(a, 0, sizeof(a));
        scanf("%d", &n);
        for (int i = 1; i <= n; ++i) {
            scanf("%d", &d);
            insert(i, d);
        }
        string str;
        printf("Case %d:\n", k++);
        while (cin >> str) {
            if (str == "End")   break;
            int x, y;
            scanf("%d %d", &x, &y);
            if (str == "Query")
                printf("%lld\n", getSum(y) - getSum(x - 1));
            else if (str == "Add")
                insert(x, y);
            else if (str == "Sub")
                insert(x, -y);
        }
    }
    return 0;
}

线段树

模板一、RMQ,查询区间最值下标

#include<iostream>  
 
using namespace std;  
  
#define MAXN 100  
#define MAXIND 256 //线段树节点个数  
  
//构建线段树,目的:得到M数组.  
void build(int node, int b, int e, int M[], int A[])  
{  
    if (b == e)  
        M[node] = b; //只有一个元素,只有一个下标  
    else  
    {   
        build(2 * node, b, (b + e) / 2, M, A);  
        build(2 * node + 1, (b + e) / 2 + 1, e, M, A);  
 
	    if (A[M[2 * node]] <= A[M[2 * node + 1]])  
	        M[node] = M[2 * node];  
	    else  
	        M[node] = M[2 * node + 1];  
    }  
}  
  
//找出区间 [i, j] 上的最小值的索引  
int query(int node, int b, int e, int M[], int A[], int i, int j)  
{  
    int p1, p2;  
  
    //查询区间和要求的区间没有交集  
    if (i > e || j < b)  
        return -1;  
 
    if (b >= i && e <= j)  
        return M[node];  
 
    p1 = query(2 * node, b, (b + e) / 2, M, A, i, j);  
    p2 = query(2 * node + 1, (b + e) / 2 + 1, e, M, A, i, j);  
  
    //return the position where the overall  
    //minimum is  
    if (p1 == -1)  
        return M[node] = p2;  
    if (p2 == -1)  
        return M[node] = p1;  
    if (A[p1] <= A[p2])  
        return M[node] = p1;  
    return M[node] = p2;  
  
}  
  
  
int main()  
{  
    int M[MAXIND]; //下标1起才有意义,否则不是二叉树,保存下标编号节点对应区间最小值的下标.  
    memset(M,-1,sizeof(M));  
    int a[]={3,4,5,7,2,1,0,3,4,5};  
    build(1, 0, sizeof(a)/sizeof(a[0])-1, M, a);  
    cout<<query(1, 0, sizeof(a)/sizeof(a[0])-1, M, a, 0, 5)<<endl;  
    return 0;  
}  

模板二、连续区间修改或者单节点更新的动态查询问题 (此模板查询区间和)

#include <cstdio>  
#include <algorithm>  
using namespace std;  
   
#define lson l , m , rt << 1  
#define rson m + 1 , r , rt << 1 | 1 
#define root 1 , N , 1 
#define LL long long  
const int maxn = 111111;  
LL add[maxn<<2];  
LL sum[maxn<<2];  
void PushUp(int rt) {  
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
}  
void PushDown(int rt,int m) {  
    if (add[rt]) {  
        add[rt<<1] += add[rt];  
        add[rt<<1|1] += add[rt];  
        sum[rt<<1] += add[rt] * (m - (m >> 1));  
        sum[rt<<1|1] += add[rt] * (m >> 1);  
        add[rt] = 0;  
    }  
}  
void build(int l,int r,int rt) {  
    add[rt] = 0;  
    if (l == r) {  
        scanf("%lld",&sum[rt]);  
        return ;  
    }  
    int m = (l + r) >> 1;  
    build(lson);  
    build(rson);  
    PushUp(rt);  
}  
void update(int L,int R,int c,int l,int r,int rt) {  
    if (L <= l && r <= R) {  
        add[rt] += c;  
        sum[rt] += (LL)c * (r - l + 1);  
        return ;  
    }  
    PushDown(rt , r - l + 1);  
    int m = (l + r) >> 1;  
    if (L <= m) update(L , R , c , lson);  
    if (m < R) update(L , R , c , rson);  
    PushUp(rt);  
}  
LL query(int L,int R,int l,int r,int rt) {  
    if (L <= l && r <= R) {  
        return sum[rt];  
    }  
    PushDown(rt , r - l + 1);  
    int m = (l + r) >> 1;  
    LL ret = 0;  
    if (L <= m) ret += query(L , R , lson);  
    if (m < R) ret += query(L , R , rson);  
    return ret;  
}  
int main() {  
    int N , Q;  
    scanf("%d%d",&N,&Q);  
    build(root);  
    while (Q --) {  
        char op[2];  
        int a , b , c;  
        scanf("%s",op);  
        if (op[0] == 'Q') {  
            scanf("%d%d",&a,&b);  
            printf("%lld\n",query(a , b ,root));  
        } else {  
            scanf("%d%d%d",&a,&b,&c);  
            update(a , b , c , root);  
        }  
    }  
    return 0;  
}  

前缀和

一维前缀和

有数组A,数组A对应的前缀和数组为S,有:
S [ k ] = ∑ i = 0 k A [ i ] S[k]=\sum_{i=0}^{k}A[i] S[k]=i=0kA[i]

由此方便了范围查询:
∑ i = L R A [ i ] = S [ R ] − S [ L − 1 ] \sum_{i=L}^RA[i]=S[R]-S[L-1] i=LRA[i]=S[R]S[L1]

二维前缀和

对于二维数组A,数组A对应的前缀和数组为S,有:
S [ i ] [ j ] = ∑ m = 0 i ∑ n = 0 j A [ i ] [ j ] S[i][j]=\sum_{m=0}^i\sum_{n=0}^jA[i][j] S[i][j]=m=0in=0jA[i][j]
计算时二维前缀和时,可以使用递推公式:
S [ i ] [ j ] = A [ i ] [ j ] + S [ i − 1 ] [ j ] + S [ i ] [ j − 1 ] − S [ i − 1 ] [ j − 1 ] S[i][j]=A[i][j]+S[i-1][j]+S[i][j-1]-S[i-1][j-1] S[i][j]=A[i][j]+S[i1][j]+S[i][j1]S[i1][j1]
当求被点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)和点 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)围起来的元素的和时,可以使用:
∑ i = x 1 x 2 ∑ j = y 1 y 2 A [ i ] [ j ] = S [ x 2 ] [ y 2 ] − S [ x 1 − 1 ] [ y 2 ] − S [ x 2 ] [ y 1 − 1 ] + S [ x 1 − 1 ] [ y 1 − 1 ] \sum_{i=x_1}^{x_2}\sum_{j=y_1}^{y_2}A[i][j]=S[x_2][y_2]-S[x_1-1][y2]-S[x_2][y_1-1]+S[x_1-1][y_1-1] i=x1x2j=y1y2A[i][j]=S[x2][y2]S[x11][y2]S[x2][y11]+S[x11][y11]

差分

差分可解决范围更新的问题。

思想:

  • 延后更新
  • 更新的起点和终点
  • 利用前缀和

样例:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+9;
int a[maxn],b[maxn];
int main(){
	int i,j,k,n,m,p;
	cin>>n>>m;
	for(i=1;i<=n;i++){
		cin>>a[i];
	}
	for(i=1;i<=m;i++){
		int L,R,t;
		cin>>t>>L>>R>>p;
		if(t==1){
			b[L]+=p;b[R+1]-=p;
		}
		else{
			b[L]-=p;b[R+1]+=p;
		}
	}
	int add=0;
	for(i=1;i<=n;i++){
		add+=b[i];
		a[i]+=a[i-1]+add;
	}
	int x,y;
	cin>>x>>y;
	cout<<a[y]-a[x-1]<<endl;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线段树树状数组都是用来解决区间相关问题的数据结构。 线段树是一种二叉树形式的数据结构,用于解决区间询问题。每个节点表示一个区间,根节点表示整个区间,通过对区间进行适当的划分,将原问题划分为子问题,递归地构建线段树线段树的叶子节点表示原始数组的单个元素,而其他节点表示其子区间的一些统计信息,如和、最大值、最小值等。通过适当的操作,可以在O(logN)的时间内区间的统计信息,也可以在O(logN)的时间内更新一个元素或一个区间的值。 树状数组是一种实现类似累加的数据结构,用于解决前缀询问题。树状数组的底层数据结构是一个数组,通过对数组的某些位置进行增加或询操作,可以在O(logN)的时间内得到累加值。数组的索引和实际数值之间存在一种特殊的关系,即某个位置的累加值等于该位置的二进制表示中最低位的连续1的个数。树状数组区间询通过将原始数组转换为差分数组来实现,将询问题转换为若干个单点询。 线段树树状数组在解决问题时都具有一些特定的优势和适用场景。线段树适用于一些需要频繁修区间统计信息的问题,如区间最值、区间和等。而树状数组适用于一些需要频繁前缀和的问题,如求逆序对的数量或统计小于某个数的元素个数等。根据具体的问题需要,我们可以选择合适的数据结构来解决和优化计算效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值