二叉树的遍历
树的遍历是树的一种重要的运算。所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历(traversal)。那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。
深度优先遍历
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。
先序遍历
在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树
def preorder(self, root):
# 递归实现先序遍历
if root == None:
return
print(root.elem)
self.preorder(root.lchild)
self.preorder(root.rchild)
def preorder(self, root):
# 使用栈来实现遍历(栈结构是先进后出,后进先出)
if root == None:
return
l = []
l.append(root)
while l:
node = l.pop()
print(node.elem)
# 先放入右节点,最后才打印,如果左节点一直有值,则会实现压栈效果,直到最后的左边的元素全部pop完成才会轮到右边的节点
if root.rchild != None:
l.append(root.rchild)
# 放入左节点,下个循环先打印
if root.lchild != None:
l.append(root.lchild)
中序遍历
在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树
def inorder(self, root):
# 递归实现先序遍历
if root == None:
return
self.inorder(root.lchild)
print(root.elem)
self.inorder(root.rchild)
后序遍历
在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点
def postorder(self, root):
# 递归实现先序遍历
if root == None:
return
self.postorder(root.lchild)
self.postorder(root.rchild)
print(root.elem)
广度优先遍历(层次遍历)
从树的root开始,从上到下从从左到右遍历整个树的节点
def breadth_travel(self, root):
"""利用队列实现树的层次遍历"""
if root == None:
return
queue = []
queue.append(root)
while queue:
node = queue.pop(0)
print node.elem,
if node.lchild != None:
queue.append(node.lchild)
if node.rchild != None:
queue.append(node.rchild)