人工智能(Artificial Intelligence,简称AI)指的是那些需要人类智能(例如视觉感知或决策能力)来参与完成的计算机技术。它是一门致力于模拟、延伸以及扩展人类智能的理论、方法和技术应用系统的学科。该概念于1956年由McCarthy等人首次提出,不过在那个时期,由于技术过度依赖人工操作,其发展速度相对缓慢。然而,近年来,随着计算机技术的迅猛发展,AI也取得了突破性的进展。特别是2006年深度学习的兴起,更是推动人工智能步入了快速发展的轨道,在众多领域都展现出了其重要价值,其中在医学领域,尤其是在医学影像方面的应用尤为显著。
医学影像能够提供人体组织的解剖结构和功能代谢信息,在疾病的诊断、分期以及疗效评估等方面发挥着至关重要的作用。而医学图像处理则是获取高质量图像的关键手段,人工智能在医学影像处理领域也实现了快速发展。本文旨在对人工智能在CT、MR及PET/CT设备中的图像降噪、病灶分割以及定量化处理等方面的最新进展进行综述,以期提升临床对人工智能应用的认识,并推动人工智能在医学影像领域的更广泛应用。
降低图像噪声
噪声是影响图像质量的关键因素,而人工智能在降低噪声方面展现出了巨大的优势。特别是残差学习(residual learning)、密集网络学习(dense networks learning)以及批处理归一化等深度学习算法的运用,能够显著提升图像的信噪比(signal-to-noise ratio,SNR)。
在CT图像的降噪应用中,人工智能已经相对成熟,尤其在血管重建方面表现突出。它能够明显降低下肢动脉CTA图像的噪声,从而提升图像质量。陈依林等人的研究针对低kV逆血流扫描的下肢动脉CT血管重建图像,对比了不同权重的自适应统计迭代重建(ASIR-V)与不同强度的深度卷积神经网络的深度学习算法(DLIR)在优化图像SNR中的效果。研究发现,随着ASIR-V重建权重和DLIR重建强度的增加,图像的SNR值逐渐提高,且高DLIR组的SNR最高,图像质量最佳。
在MRI领域,高质量的图像能够更精确地显示解剖结构,从而提高疾病诊断的准确性和早期诊断率。基于人工智能的滤波和插值重建技术,通过深度学习去除噪声,能够在不损失时间或图像SNR的情况下,获得更高分辨率的高质量图像。特别是在腹部MRI中,基于人工智能的滤波和插值重建技术的降噪性能明显优于常规滤波技术。
PET图像的噪声主要源于设备本身以及注射的药物。当注射低剂量药物时,会导致图像噪声增加。Cui等人利用基于深度神经网络(DNNs)的U-Net算法有效降低了PET图像的噪声。在该研究中,PET/CT及PET/MR中的CT和MR图像被用作输入,而有噪声的PET图像则作为标签进行训练。通过使用肺部PET/CT、肺部PET/MR、肝脏PET/MR数据集进行验证,结果显示DNNs所得到的对比噪声比均有不同程度的提升,其中PET/CT的对比噪声比提高了(53.35±21.78)%,信噪比(SNR)的提升尤为显著。减少正电子药物的注射剂量虽然可以降低辐射剂量,但同时会增加图像噪声并降低SNR,进而影响诊断和定量的准确性。然而,人工智能算法在降低低剂量PET图像噪声和提高SNR方面展现出了巨大潜力。
Lu等人提出了一种基于3D U-net的肿瘤去噪方法,该方法能够将10%的低剂量PET数据还原为标准剂量。同时,他们还探讨了不同网络架构、图像尺寸、标签和输入等因素对SNR及标准摄取值(SUV)偏差的影响。研究结果显示,3D U-net具有最佳的定量性能,能够获得更高的SNR和更低的SUVmax偏差(<15%)。与高斯滤波器、解剖引导非局部均值滤波器等常规降噪方法相比,3D U-net表现更优。此外,CT图像可以进一步提高多通道U-net的定量精度。对于亚厘米的肺小结节,通过10%的低剂量数据生成的标准剂量图像,3D U-net也能有效地降低图像噪声并控制SUVmax偏差。
提高病灶分割准确性
CT、MR、PET/CT等多模态图像能够同时展现病变的解剖结构和代谢信息。借助病变分割技术,我们能够更精确地呈现病变的形态及其与周围组织的毗邻关系,进而为临床诊断和治疗提供更为可靠的依据。然而,传统的图像分割方法主要依赖人工手动勾画,不仅操作繁琐,而且主观性强。随着人工智能技术的发展,特别是基于深度学习的卷积神经网络算法的应用,我们能够实现病灶的自动识别与勾画,从而显著降低主观因素的影响,提高图像分割的效率和可重复性。
CT作为一种常规辅助诊断技术,主要通过密度差异来识别病变。然而,由于CT图像为灰度成像,大量的图像处理工作容易导致视觉疲劳,进而引发漏诊或误诊。人工智能技术的引入,能够快速、自动地标注出病灶的部位、大小、数量及其与周围组织的关系,从而降低漏诊率,提高病灶识别率。在颅内血管分割方面,人工智能技术已经相对成熟。例如,Fu等人研发的基于3D卷积神经网络(CNN)和头颈部CTA血管分割自动化后处理系统,能够实现头颈CTA血管的自动重组,显著缩短后处理时间,减少技师点击次数,极大提高了后处理效率和精准度,同时降低了扫描次数和工作强度。
腹部器官众多且密度相近,因此精准分割各器官颇具挑战。Roth等人应用深度学习的整体嵌套卷积神经网络(HNN)和3D U-net神经网络对胰腺进行分割,取得了较高的分割准确率,Dice相似系数(DSC)均大于0.81。肌肉组织也是分割的难点之一,Dabiri等人在腹部CT中利用深度学习算法构建肌肉-脂肪分割网络,实现了骨骼肌、皮下脂肪、内脏脂肪和肌肉间脂肪的自动分割,且准确率高,平均Jaccard得分均大于80%,表明该算法具有全自动、高精度分析身体成分的潜力。
磁共振(MR)图像具有序列多、信号复杂的特点。针对这些特点,人工智能能够迅速且精准地批量处理大量MR数据,在实现对不同病变的精确分割方面展现出巨大的应用潜力。Jünger等人针对非小细胞癌的315个脑转移瘤病灶,分别采用深度学习3D-CNN模型与手动分割方法进行对比研究。结果显示,3D-CNN模型的Dice相似系数(DSC)达到0.72,且其分割体积[(0.81±1.96) cm³]显著小于手动分割体积[(1.11±2.61) cm³],同时模型展现出高灵敏度(85.1%),表明该人工智能分割模型具备出色的分割效能。Yang等人则利用卷积神经网络在MR图像上分割肌肉组织,并计算肌肉在人体结构中的占比,以辅助诊断肌营养不良障碍。研究结果证明,该模型具有良好的准确度和灵敏度。由于MR对骨转移的诊断具有较高灵敏度,能够准确显示转移灶及周围软组织受侵犯情况。刘想等人通过训练3D U-Net模型,自动分割前列腺多参数MR中的弥散加权成像(DWI)和表观弥散系数(ADC)图像中的正常骨质结构,并认为双序列(DWI高+ADC)是3D U-Net分割盆腔骨质结构的最佳组合序列。
肿瘤病灶的分割以及边界定位对于术前评估切除范围以及放疗靶区的勾画具有至关重要的意义。PET/CT作为当前应用较为成熟的多模态影像技术,能够同时提供病变的解剖和代谢信息,这有助于临床医师更为精准地评估肿瘤的边界。相较于单纯的CT图像,PET/CT在确定肿瘤病灶轮廓以及定位正常组织与病变组织边界方面表现得更为准确。然而,手动分割方法耗时较长,因此临床上迫切需要一种人工智能自动分割方法。
有学者构建了基于脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)的模型,用于对PET/CT图像进行自动分割,并与常规的手动分割方法进行了对比。研究结果显示,PET自动分割的靶区与手动勾画的靶区高度一致,且其效果优于CT分割。特别是在区分肿瘤与肺不张时,PET自动分割肿瘤组织的精确度更高。在放疗靶区勾画方面,基于PET的放疗计划在正常肺组织的V20、V30指标上均显著低于基于CT的放疗计划。对于全身性疾病如淋巴瘤而言,图像的分割相较于单一病灶更为困难。
图像定量化处理
定量化分析能够显著提升疾病诊断、疗效评估以及预后预测的准确性,而人工智能在常规影像图像的定量处理方面也取得了快速进展。以新型冠状病毒为例,该病毒主要侵袭呼吸系统,在CT图像上常表现为肺外周带的磨玻璃影,这与常规的细菌性肺炎难以准确区分。Kang等人利用深度学习算法构建了一个定量鉴别新冠肺炎和细菌性肺炎的模型,研究结果显示,该模型在鉴别这两种类型肺炎时的准确率高达91.2%,有助于临床实现快速且准确的诊断。
在骨关节疾病的诊断中,磁共振(MR)相较于其他影像学检查具有明显优势,特别是在评估软骨炎症及损伤方面。Tang等人对128例膝关节骨性关节炎患者的MR图像进行了研究,他们利用多类梯度协调Dice损失的卷积神经网络算法,自动测量了这些患者的软骨和半月板的体积、厚度以及最小关节间隙宽度(mJSW),并与对照组进行了比较。研究获得了较高的Dice值,其中膝盖骨隔室的Dice值范围为0.948~0.974,软骨为0.717~0.809,外、内侧半月板为0.846。此外,软骨、半月板和mJSW的体积和厚度的平均组内相关性分别为0.916、0.899和0.876,且软骨和mJSW的体积和厚度测量与膝关节骨性关节炎(OA)的进展密切相关。这表明基于卷积神经网络模型能够准确计算膝关节骨性关节炎的相关生物指标,如软骨厚度和mJSW,为临床医师提供了准确的诊断及评估治疗效果的定量化方法。
PET/CT技术能够在分子水平上展现人体的代谢和功能状态。Choi等人运用深度学习方法构建了一个利用PET/CT筛选阿尔茨海默症(AD)的模型。该模型在筛查AD方面表现出色,其受试者工作特征曲线下面积(AUC)达到0.94。此外,该模型预测的患者认知障碍评分与迷你心理状态测试分数紧密相关(r=0.55)。研究还发现,个体认知功能障碍的相关区域包括扣带和高额顶叶皮质,并且这些认知功能障碍区域能够在PET/CT图像上实现可视化。
不同的示踪剂能够反映其特有的生物活动信息,从而帮助临床医师判断疾病的发病机制、严重程度以及累及范围等。以前列腺特异性膜抗原(PSMA)为例,它是前列腺细胞的一类特异性肿瘤标志物,在正常前列腺细胞中低表达,但在大多数前列腺癌组织中高表达。68Ga-PSMA PET显像技术能够直观地显示前列腺癌灶及其转移灶。
Zhao等人对193名前列腺癌患者的68Ga-PSMA-11 PET/CT图像进行了研究,他们利用2.5D U-net建立了一个模型来定量化肿瘤负荷,为放射性核素靶向治疗提供了有力依据。研究结果显示,该模型在骨病变检测中的准确率和召回率均达到99%,在淋巴结病变检测中的准确率为94%,召回率为89%。这表明该模型能够准确地识别及量化前列腺癌灶。
未来的展望
人工智能在医学影像图像处理领域,无论是降噪、病灶分割还是定量化分析,均已展现出其广阔的应用前景和巨大的发展潜力。随着计算机硬件与软件技术的不断进步和完善,人工智能技术在疾病的诊断、治疗指导以及疗效评估等方面,都有望实现快速提升,从而进一步减少医师主观判断和经验对结果解读的影响。
然而,人工智能在医学影像处理中的应用仍面临诸多亟待解决的问题。尽管已有大量研究表明,人工智能能够显著提高疾病诊断的准确度和特异度,但当前研究所依据的数据仍然有限,需要更多数据来进一步验证研究结果的稳定性和可靠性。
此外,在人工智能软件的开发过程中,应加强与临床医生的沟通与合作,确保软件设计更加贴近临床实际需求,从而真正提升临床分析和诊断能力,为医疗水平的飞速发展提供有力支持。