【算法题】剪绳子、计算二进制中1的个数、数值的整数次方

一、剪绳子

1.1、题目描述

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

来源:力扣(LeetCode)

1.2、思路

利用数学结论,数学上有个常识:当有一定数量的整数数字,若其总和不变,则每个数字之间的差距越小,其所有数字的乘积越大;所以尽可能把 n 均分之后的数字连乘的积会达到最大。不理解?没事,还有一个相同的结论:多边形边越趋于相等总面积越大。

也就是说,把一个数字,尽可能的均分之后数字连乘的积会达到最大。下面直接给出结论,推导过程就略过了。

当子段长度 len=3 时,可以得到最大乘积。因此,应该将给定的正整数拆分成尽可能多的3。根据 n 除以 3 的余数进行分类讨论:

  • 如果余数为 0,即 n=3m(m≥2),则将 n 拆分成 m 个 3;
  • 如果余数为 1,即 n=3m+1(m≥1),由于 2×2>3×1,因此将 n 拆分成 m−1 个 3 和 2 个 2;
  • 如果余数为 2,即 n=3m+2(m≥1),则将 n 拆分成 m 个 3 和 1 个 2。

上述拆分的适用条件是 n≥4。如果 n≤3,则上述拆分不适用,需要单独处理。

  • 如果 n=2,则唯一的拆分方案是 2=1+1,最大乘积是 1×1=1;
  • 如果 n=3,则拆分方案有 3=1+2=1+1+1,最大乘积对应方案 3=1+2,最大乘积是 1×2=2。

这两种情形可以合并为:当 n≤3 时,最大乘积是 n−1。

1.3、代码实现:

class Solution {
public:
    int cuttingRope(int n) {
        if(n<=3)
            return n-1;
        int q=n/3;
        int r=n%3;
        if(r==0)//3*m
            return (int)pow(3,q);
        else if(r==1)//3*m+1=3*(m-1)+2*2;
            return (int)pow(3,q-1)*2*2;
        else//3*m+2
            return (int)pow(3,q)*2;
    }
};

时间复杂度:O(1)。涉及到的操作包括计算商和余数,以及幂次运算,时间复杂度都是常数。

空间复杂度:O(1)。只需要使用常数复杂度的额外空间。

1.4、华丽的快速幂取余

尽可能切多点3,对于最后的切法,要考虑到整体长度。

  • 起码得切2,切1没有意义。
  • 或者切3,即绳子长度刚好可以被 3 整除。
  • 或者切4,比如一直切3,最后余下1的长度,又因为前述提到不要切1,我们可以把前一段3和这一段1,合并起来,切成4。
  • 不能切5,因为可以将5切成 2*3 ,可以得到乘积6。

总结一句话,一直对这段绳子切3,直到最后一个不大于4。为了防止计算的值超出变量类型的返回值,每次都对值进行1000000007取模(参考leetcode)。

代码实现:

class Solution {
public:
    int cuttingRope(int n) {
        if(n<=3)
            return n-1;
        long res=1;
        while(n>4)
        {
            n-=3;
            res=(res%1000000007)*3;
        }
        return (n*res)%1000000007;
    }
};

1.5、小结

数学公式的好处是时间复杂度低。核心是对3取模:

n ≥ 4 n\geq4 n4情况下:

  • n%3==0,结果为 3 n ÷ 2 3^{n\div2} 3n÷2
  • n%3==1,结果为 3 n − 1 × 4 3^{n-1}\times4 3n1×4
  • n%3==2,结果为 3 n ÷ 2 × 2 3^{n\div2}\times2 3n÷2×2

否则结果是n-1。

二、数值的整数次方

2.1、题目描述

实现 n class=“nolink”>pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。

2.2、思路

分治算法+递归。如果要计算 x 64 x^{64} x64 ,可以按照:x–> x 2 x^{2} x2 --> x 4 x^{4} x4 --> x 16 x^{16} x16 --> x 32 x^{32} x32 --> x 64 x^{64} x64 的顺序,从x 开始,每次直接把上一次的结果进行平方,计算6次就可以得到 x 64 x^{64} x64 的值,而不需要对x 乘63 次 x。

再比如,如果要计算 x 77 x^{77} x77 ,可以按照:x–> x 2 x^{2} x2 --> x 4 x^{4} x4 --> x 9 x^{9} x9 --> x 19 x^{19} x19 --> x 38 x^{38} x38 --> x 77 x^{77} x77 的顺序,可以看到把上一次的结果进行平方后,还要额外乘一个x。

直接从左到右进行推导看上去很困难,因为在每一步中,我们不知道在将上一次的结果平方之后,还需不需要额外乘x。但如果我们从右往左看,分治的思想就十分明显了:

  1. 当要计算 x n x^{n} xn 时,先递归地计算出 y = x n / 2 y=x^{n /2} y=xn/2
  2. 根据递归计算的结果,如果n 为偶数,那么 x n = y 2 x^{n}=y^2 xn=y2 ;如果n为奇数,那么 x n = y 2 × x x^{n}=y^2 \times x xn=y2×x
  3. 递归的边界为 0,任意数的0 次方均为 1。

由于每次递归都会使得指数减少一半,因此递归的层数为O(logn),算法可以在很快的时间内得到结果。

2.3、代码实现

class Solution {
public:
    double quikly(double x, long long n)
    {
        if(n==0)
            return 1.0;
        double cnt=quikly(x,n/2);
        return n%2==0?cnt*cnt:cnt*cnt*x;
    }
    double myPow(double x, int n) {
        long long N=n;
        return N<0?1.0/quikly(x,-N):quikly(x,N);
            
    }
};

2.4、小结

快速幂的本质是分治法。

三、计算二进制中1的个数

3.1、题目描述

编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为 汉明重量).)。

示例 1:

输入:n = 11 (控制台输入 00000000000000000000000000001011)
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 ‘1’。

示例 2:

输入:n = 128 (控制台输入 00000000000000000000000010000000)
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 ‘1’。

示例 3:

输入:n = 4294967293 (控制台输入 11111111111111111111111111111101,部分语言中 n = -3)
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 ‘1’。

来源:力扣(LeetCode)

3.2、思路

计算二进制中1的个数,首先想到位运算;利用位运算的性质加速我们的检查过程,在实际代码中不断右移一位,同时判断当前的最低位是否为1来统计个数。

3.3、代码实现

class Solution {
public:
    int hammingWeight(uint32_t n) {
        int count=0;
        while(n)
        {
            if(n&1)
                count++;
            n>>=1;
        }
        return count;
    }
};

3.4、小结

位运算。

(1)右移运算(>>),正负数的右移处理方式不同:

  • 正数:高位补0,低位溢出的舍去。
  • 负数:高位补1,低位溢出的舍去。
    (2)无符号右移(>>>),无符号右移就是不管是正数还是负数高位补0(跟右移不一样,右移要兼顾正负符号,正数右移补0,负数右移补1,而 “无符号右移” 不区分,一律补0。

总结

一定要做好总结,特别是当没有解出题来,没有思路的时候,一定要通过结束阶段的总结来反思犯了什么错误。解出来了也一定要总结题目的特点,题目中哪些要素是解出该题的关键。不做总结的话,花掉的时间所得到的收获通常只有 50% 左右。

在题目完成后,要特别注意总结此题最后是归纳到哪种类型中,它在这种类型中的独特之处是什么。

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lion Long

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值