树的知识点

目录:

目录

目录:

一、基本概念:

1. 定义:

2. 概念:

3.二叉树:

a.基本概念

b.性质:

c.二叉树的存储结构:

4.二叉树的分类: 

满二叉树

完全二叉树

线索二叉树

二叉树的遍历

二、学校作业:

三、易错及重要的知识点:

1、树转换为二叉树

2、森林转换为二叉树

3、二叉树转换为树

4、二叉树转换为森林


---------------------------------------------------------------------------------------------------------------------------------

一、基本概念:

1. 定义:

        树是一种非线性结构,只有一个根结点,除根结点外每个孩子结点可以有多个后继有且仅有一个前继结点,且没有后继的结点叫叶子结点。

2. 概念:

        根结点:没有前驱;
        孩子:有前驱的结点;
        双亲结点:孩子结点的前驱;
        叶子:没有孩子结点
        结点度:结点的分支数;

        树的度:一棵树中最大结点度数;
        树的深度:树的层次数目;
        有序树:结点的子树从左到右有顺序;
        森林:多棵互不相交的树的集合

3.二叉树:

a.基本概念

  • 二叉树是n(n≥0)个结点的有限集合:
    ① 或者为空二叉树,即n = 0。
    ② 或者由一个根结点和两个互不相交的被称为根的左子树右子树组成。左子树和右子树又分别是一棵二叉树。

b.性质:

        1.第i层上最多2^(i-1)结点,最少0个;
        2.深度k,最多2^k-1个结点,最少k个结点;
        3.对于二叉树,终端结点(叶子结点)数为n0,度为2的结点数为n2,则n0=n2+1;
        4.总结点数n,分支数B,则n=B+1,n=n0+n1+n2,B=n1+2*n2;
        5.具有n个结点的完全二叉树的深度:[log2^n]+1;

c.二叉树的存储结构:

        对于非线性结构,顺序二叉树仅适用于完全二叉树,所有在这采用链式存储。

4.二叉树的分类: 

满二叉树

  通过名字就可以看出来是一个满的二叉树,意思也就是二叉树上每一层的结点数都达到了最大。看上去就像上个三角形。

                                                                   

  满二叉树必须满足:

  1.总的结点个数2k-1个结点; 如上图是一个3层的二叉树,总的结点个数为23-1=7个结点

  2.第i层的结点个数数为2k-1个结点;如上图第3层的结点个数为23-1=4个结点

  3.具有n个节点的满二叉树的深度为log2(n+1),如上图节点数为7,log2(7+1)=3,深度为3。

完全二叉树

  和满二叉树不同的是最后一层不是满的,除了最后一层,其余的k-1层是一个满二叉树,最后一层的结点是从左开始排列的。(满二叉树是特殊的完全二叉树,但完全二叉树不一定是满二叉树)

                  

  完全二叉树必须满足:

    1.某个节点没有左子节点,那么肯定也不能有右子节点

    2.从第1层到第k-1层是一个满二叉树,最后一层的结点从左开始排列。

线索二叉树

  • 若结点的左子树为空,则该结点的左孩子指针指向其前驱结点
  • 若结点的右子树为空,则该结点的右孩子指针指向其后继结点

这种指向前驱和后继的指针称为线索,将一棵普通的二叉树以某种次序遍历,并添加线索的过程称为线索化。

 

二叉树的遍历

分为三种:前序、中序、后序,其中序遍历最为重要。为啥叫这个名字?是根据根节点的顺序命名的。

比如上图正常的一个满节点,A:根节点、B:左节点、C:右节点,前序顺序是ABC(根节点排最先,然后同级先左后右);中序顺序是BAC(先左后根最后右);后序顺序是BCA(先左后右最后根)。

    

比如上图二叉树遍历结果

    前序遍历:ABCDEFGHK

    中序遍历:BDCAEHGKF

    后序遍历:DCBHKGFEA

分析中序遍历如下图,中序比较重要(java很多树排序是基于中序,后面讲解分析)

二、学校作业:

三、易错及重要的知识点:

1、树转换为二叉树

由于二叉树是有序的,为了避免混淆,对于无序树,我们约定树中的每个结点的孩子结点按从左到右的顺序进行编号。

将树转换成二叉树的步骤是:
(1)加线。就是在所有兄弟结点之间加一条连线;
(2)抹线。就是对树中的每个结点,只保留他与第一个孩子结点之间的连线,删除它与其它孩子结点之间的连线;
(3)旋转。就是以树的根结点为轴心,将整棵树顺时针旋转一定角度,使之结构层次分明。

树转换为二叉树的过程示意图

 

2、森林转换为二叉树

森林是由若干棵树组成,可以将森林中的每棵树的根结点看作是兄弟,由于每棵树都可以转换为二叉树,所以森林也可以转换为二叉树。

将森林转换为二叉树的步骤是:
(1)先把每棵树转换为二叉树;
(2)第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子结点,用线连接起来。当所有的二叉树连接起来后得到的二叉树就是由森林转换得到的二叉树。

森林转换为二叉树的转换过程示意图

 


3、二叉树转换为树

二叉树转换为树是树转换为二叉树的逆过程,其步骤是:
(1)若某结点的左孩子结点存在,将左孩子结点的右孩子结点、右孩子结点的右孩子结点……都作为该结点的孩子结点,将该结点与这些右孩子结点用线连接起来;
(2)删除原二叉树中所有结点与其右孩子结点的连线;
(3)整理(1)和(2)两步得到的树,使之结构层次分明。

二叉树转换为树的过程示意图

 


4、二叉树转换为森林

二叉树转换为森林比较简单,其步骤如下:
(1)先把每个结点与右孩子结点的连线删除,得到分离的二叉树;
(2)把分离后的每棵二叉树转换为树;
(3)整理第(2)步得到的树,使之规范,这样得到森林。

根据树与二叉树的转换关系以及二叉树的遍历定义可以推知,树的先序遍历与其转换的相应的二叉树的先序遍历的结果序列相同;树的后序遍历与其转换的二叉树的中序遍历的结果序列相同;树的层序遍历与其转换的二叉树的后序遍历的结果序列相同。由森林与二叉树的转换关系以及森林与二叉树的遍历定义可知,森林的先序遍历和中序遍历与所转换得到的二叉树的先序遍历和中序遍历的结果序列相同。

二叉树转换为森林的过程示意图

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值