LeetCode(338)比特位计数

给定一个非负整数,求解其二进制表示中1的个数。采用动态规划策略,通过分析偶数和奇数位的特点,用O(N)的时间复杂度实现。动态规划方程为:偶数位的1个数等于其一半位的1个数,奇数位的1个数等于前一位的1个数加1。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(338)比特位计数

Description:

给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。

示例1:

输入: 2
输出: [0,1,1]

示例2:

输入: 5
输出: [0,1,1,2,1,2]

思路:

题要求使用一种O(N)的算法。

那么这就很明了了,典型的动态规划。

我们仔细分析题目不难发现:我们可以将其分为偶数和奇数两部分。

创建数组temp,temp[N]表示数N二进制中1的个数。

  1. 偶数:一个偶数可以分解成2*(本身/2),其中*2的操作相当于将一个数右移一个单位,这对于1的个数是不起作用的。 于是,temp[N] = temp[N/2]
  2. 奇数:由于奇数减1必定为偶数,而偶数的第一位一定为1,所以奇数的1的个数一定比偶数多1。所以temp[N] = temp[N-1] + 1。

代码:

1.c语言:

int* countBits(int num, int* returnSize){
    *returnSize = num + 1;
    int *temp;
    temp = (int *)malloc((num+1)*sizeof(int));
    temp[0] = 0;
    for (int i = 1; i <= num; i++) {
        if (i&1) { //num is odd
            temp[i] = temp[i-1] + 1;
        } else {
            temp[i] = temp[i>>1];
        }
    }
    return temp;
}
  1. cpp:
class Solution {
public:
    vector<int> countBits(int num) {
        vector<int> temp(num+1, 0);
        for (int i = 1; i <= num; i++) {
            if (i&1) //when i is odd
                temp[i] = temp[i-1] + 1;
            else 
                temp[i] = temp[i>>1];
        }
        return temp;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值