q2_neural.py
1. 在算cost和CE(cross entropy)反向传播的时候,要除以batch的大小,即把一个batch看成一个样本
cost = np.sum(-np.log(y[labels == 1])) / data.shape[0]
### YOUR CODE HERE: backward propagation
#dz2 = (y - labels) wrong
#一个batch算一个样本
dz2 = (y - labels) / data.shape[0]
2. 反向传播(连乘之后)的dw dx db形状必须和w x b相同。