tf.nn.softmax_cross_entropy_with_logits 将在未来弃用

访问tensorflow的官网API页面以获得完整信息:tf.nn.softmax_cross_entropy_with_logits

在分类问题中,经常会用到交叉熵损失,如果用tensorflow框架,那么就经常会用到softmax_cross_entropy_with_logits这个函数,如今TensorFlow更新到了r1.8,如今这个函数迎来了一个巨大的变化。这个函数有着两个主要的输入参数,如:

tf.nn.softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1,
    name=None
)

其中的logit指的是未经过softmax变换输出的(也就是未经过尺度变化的)原始输出,这个函数内部会进行softmax操作以保证最高的效率,但是,这个函数的梯度流只会传播到logits上,而不会传播到labels中,也就是说,如果这个labels也是由一个网络 FW F W 生成的,而且需要更新学习这个网络 FW F W ,那么用这个函数就无能为力了。因此在TensorFlow r1.8中推荐使用tf.nn.softmax_cross_entropy_with_logits_v2,其和前者大同小异,唯一的差别就是可以将梯度流传播到logitslabels中,如果实在不想要梯度流传播到labels中,可以在输入labels之前使用tf.stop_gradient()以阻断梯度流。

为了和以后的版本兼容,建议以后弃用tf.nn.softmax_cross_entropy_with_logits而改用tf.nn.softmax_cross_entropy_with_logits_v2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FesianXu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值