访问tensorflow的官网API页面以获得完整信息:tf.nn.softmax_cross_entropy_with_logits。
在分类问题中,经常会用到交叉熵损失,如果用tensorflow框架,那么就经常会用到softmax_cross_entropy_with_logits
这个函数,如今TensorFlow更新到了r1.8,如今这个函数迎来了一个巨大的变化。这个函数有着两个主要的输入参数,如:
tf.nn.softmax_cross_entropy_with_logits(
_sentinel=None,
labels=None,
logits=None,
dim=-1,
name=None
)
其中的logit指的是未经过softmax
变换输出的(也就是未经过尺度变化的)原始输出,这个函数内部会进行softmax
操作以保证最高的效率,但是,这个函数的梯度流只会传播到logits
上,而不会传播到labels
中,也就是说,如果这个labels
也是由一个网络
FW
F
W
生成的,而且需要更新学习这个网络
FW
F
W
,那么用这个函数就无能为力了。因此在TensorFlow r1.8中推荐使用tf.nn.softmax_cross_entropy_with_logits_v2
,其和前者大同小异,唯一的差别就是可以将梯度流传播到logits
和labels
中,如果实在不想要梯度流传播到labels
中,可以在输入labels
之前使用tf.stop_gradient()
以阻断梯度流。
为了和以后的版本兼容,建议以后弃用tf.nn.softmax_cross_entropy_with_logits
而改用tf.nn.softmax_cross_entropy_with_logits_v2
。