https://www.geeksforgeeks.org/dsa/binary-search/
算法介绍
二分查找算法是一种在已排序数组中,通过将搜索区间反复划分为两半的搜索算法。二分查找的思想是利用数组已排序的信息,将时间复杂度降低到 O(log N)
有两种方法实现二分查找 (迭代和递归)
代码实现
迭代法 ☆☆☆☆☆
下面这段代码在面试考察时希望可以做到肌肉记忆
private int binarySort(int[] nums, int target) {
int n = nums.length;
int left = 0, right = n - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) return mid;
else if (nums[mid] < target) left = mid + 1;
else right = mid - 1;
}
return -1;
}
1 为什么left <= right 而不是 left < right?
假设nums数组元素如下,target为 20,预期返回1
index | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
value | 10 | 20 | 30 | 40 | 50 |
初始值 | left = 0 | right = 4 | |||
第一次执行 | left = 0 | right = 4 | mid = 0+(4-0)/2 =2 | nums[mid] > 20, right = mid -1 =1 | |
第二次执行 | left = 0 | right = 1 | mid = 0+(1-0)/2 =0 | nums[mid] < 20, left = mid +1 =1 | |
第三次执行 | left = 1 | right = 1 | mid = 1+(1-1)/2 =1 | nums[mid] = 20, 返回1 |
如上表格所示,如果 left < right就停止比较,那么第三次就不会执行了自然找不到索引为1,而是直接返回 -1,这和预期不符
2 为什么有些算法题中出现 left < right?
- 如果你要找某个 具体数值的位置:用 low <= high
- 如果你要找某个 边界 / 极值:用 low < high 更安全(边界不容易越界)
这里我们通过一个题目来加深理解
给定一个非递减排序的数组 nums 和一个目标值 target,返回第一个 大于等于 target 的元素索引。如果不存在,返回 nums.length
int lowerBound(int[] nums, int target) {
int low = 0, high = nums.length; // 注意这里是 high = nums.length,不是 length - 1
while (low < high) {
int mid = low + (high - low) / 2;
if (nums[mid] < target) {
low = mid + 1; // 排除左侧
} else {
high = mid; // mid 可能是解,保留它
}
}
return low;
}
递归法 ☆☆☆
private static int binarySort2(int[] nums, int left, int right, int target) {
if (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) return mid;
else if (nums[mid] < target) return binarySort2(nums, mid + 1, right, target);
else return binarySort2(nums, left, mid - 1, target);
}
return -1;
}
public static void main(String[] args) {
int[] nums = {0, 1, 2, 3, 4, 5};
System.out.println(binarySort2(nums, 0, nums.length - 1, 2));
}