杂谈——蓝桥杯该如何应对
- 打好基础最重要
- 90%是暴力破解,是其他高级算法的i 出
- 注重解决问题的能力
一、年龄谜题
美国数学家维纳(N.Wiener)智力早熟,11岁就上了大学。 他曾在1935~1936年应邀来中国清华大学讲学。
一次,他参加某个重要会议,年轻的脸孔引人注目。 于是有人询问他的年龄,他回答说:
“我年龄的立方是个4位数。我年龄的4次方是个6位数。这10个数字正好包含了从0到9这10个数字,每个都恰好出现1次。”
请你推算一下,他当时到底有多年轻。
public class AgeMiti {
/**
* 年龄谜题
* 这个题特别强调实用性,不需要特别详细的算出具体的年龄
* 通过打印三次方和四次方的结果就能将答案找到
*/
public static void main(String[] args) {
for (int i = 11; i < 30; i++) {
String four = ""+i*i*i;
String six = ""+i*i*i*i;
if(four.length() == 4 && six.length() == 6){
System.out.println(i+" "+four+" "+six);
}
}
}
}
通过图片可以看到 18 是符合题目要求的答案
总结:
- 有些题不需要写出严谨的算法,有些题要讲究实用性
- 程序设计不一定要完美,追求实用、快速、稳定、有效
二、九宫幻方
小明最近在教邻居家的小朋友小学奥数,而最近正好讲述到了三阶幻方这个部分。
三阶幻方指的是将1~9不重复的填入一个3*3的矩阵当中,使得每一行、每一列和每一条对角线的和都是相同的。
三阶幻方又被称作九宫格,在小学奥数里有一句非常有名的口诀: “二四为肩,六八为足,左三右七,戴九履一,五居其中”,
通过这样的一句口诀就能够非常完美的构造出一个九宫格来。
4 9 2
3 5 7
8 1 6
有意思的是,所有的三阶幻方,都可以通过这样一个九宫格进行若干镜像和旋转操作之后得到。
现在小明准备将一个三阶幻方(不一定是上图中的那个)中的一些数抹掉,交给邻居家的小朋友来进行还原,并且希望她能够判断出究竟是不是只有一个解。
而你呢,也被小明交付了同样的任务,但是不同的是,你需要写一个程序~
输入格式: 输入仅包含单组测试数据。 每组测试数据为一个3*3的矩阵,其中为0的部分表示被小明抹去的部分。
对于100%的数据,满足给出的矩阵至少能还原出一组可行的三阶幻方。
输出格式: 如果仅能还原出一组可行的三阶幻方,则将其输出,否则输出“Too Many”(不包含引号)。
样例输入
0 7 2
0 5 0
0 3 0
样例输出
6 7 2
1 5 9
8 3 4
题目中有一句关键的话:所有的三阶幻方,都可以通过这样一个九宫格进行若干镜像和旋转操作之后得到。