暴力枚举
01背包
- 有 n n n件物品,每件物品的重量为 w [ i ] w[i] w[i],价值为 c [ i ] c[i] c[i]。现有一个容量为 V V V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都只有1件。
样例:
5 8 //n=5 V=8
3 5 1 2 2
4 5 2 1 3
采用动态规划解决,问题的复杂的为 O ( n V ) O(nV) O(nV)。
- 考虑对第 i i i件物品的选择策略,有两种策略:
- 不放第 i i i件物品,那么问题转化为前 i − 1 i-1 i−1件物品恰好装入容量为 v v v的背包中所能获得的最大价值,也即 d p [ i − 1 ] [ v ] dp[i-1][v] dp[i−1][v]。
- 放第 i i i件物品,那么问题转化为前 i − 1 i-1 i−1件物品恰好装入容量为 v − w [ i ] v-w[i] v−w[i]的背包中所能获得的最大价值,也即 d p [ i − 1 ] [ v − w [ i ] ] + c [ i ] dp[i-1][v-w[i]]+c[i] dp[i−1][v−w[i]]+c[i]
d p [ i ] [ v ] = m a x { d p [ i − 1 ] [ v ] , d p [ i − 1 ] [ v − w [ i ] ] + c [ i ] } ( 1 ≤ i ≤ n , w [ i ] ≤ v ≤ V ) dp[i][v]=max \begin{Bmatrix} dp[i-1][v], dp[i-1][v-w[i]]+c[i] \end{Bmatrix}\\ (1\leq i\leq n,w[i]\leq v\leq V) dp[i][v]=max{ dp[i−1][v],dp[i−1][v−w[i]]+c[i]}(1≤i≤n,w[i]≤v≤V)
公式(1)就是状态转移方程,代码如下
for(int i=1;i<=n;i++){
for(int v=w[i];v<=V;v++){
dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]);
}
}
优化:
状态转移方程中方程计算 d p [ i ] [ v ] dp[i][v] dp[i][v]总是只需要 d p [ i − 1 ] [ v ] dp[i-1][v] dp[i−1][v]左侧部分数据,因此可以将二维数组减低为一维数组 d p [ v ] dp[v] dp[v],枚举方向改为 i i i从1到 n n n, v v v从 V V V到0==(逆序!)==,状态转移方程为
d p [ v ] = m a x ( d p [ v ] , d p [ v − w [ i ] ] + c [ i ] ) ( 1 ≤ i ≤ n , w ≤ v ≤ V ) dp[v]=max(dp[v],dp[v-w[i]]+c[i])\\ (1\leq i\leq n,w\leq v\leq V) dp[