暴力枚举

本文介绍了暴力枚举和动态规划在解决实际问题中的应用,特别是针对考试复习场景。通过01背包问题阐述动态规划的解决思路,并提供了一维优化后的状态转移方程。此外,还提出了深搜DFS算法来解决相同问题,详细解释了DFS的递归边界和回溯过程。
摘要由CSDN通过智能技术生成

暴力枚举

01背包

  • n n n件物品,每件物品的重量为 w [ i ] w[i] w[i],价值为 c [ i ] c[i] c[i]。现有一个容量为 V V V的背包,问如何选取物品放入背包,使得背包内物品的总价值最大。其中每种物品都只有1件。

​ 样例:

5 8 //n=5 V=8

3 5 1 2 2

4 5 2 1 3

采用动态规划解决,问题的复杂的为 O ( n V ) O(nV) O(nV)

  • 考虑对第 i i i件物品的选择策略,有两种策略:
  1. 不放第 i i i件物品,那么问题转化为前 i − 1 i-1 i1件物品恰好装入容量为 v v v的背包中所能获得的最大价值,也即 d p [ i − 1 ] [ v ] dp[i-1][v] dp[i1][v]
  2. 放第 i i i件物品,那么问题转化为前 i − 1 i-1 i1件物品恰好装入容量为 v − w [ i ] v-w[i] vw[i]的背包中所能获得的最大价值,也即 d p [ i − 1 ] [ v − w [ i ] ] + c [ i ] dp[i-1][v-w[i]]+c[i] dp[i1][vw[i]]+c[i]

d p [ i ] [ v ] = m a x { d p [ i − 1 ] [ v ] , d p [ i − 1 ] [ v − w [ i ] ] + c [ i ] } ( 1 ≤ i ≤ n , w [ i ] ≤ v ≤ V ) dp[i][v]=max \begin{Bmatrix} dp[i-1][v], dp[i-1][v-w[i]]+c[i] \end{Bmatrix}\\ (1\leq i\leq n,w[i]\leq v\leq V) dp[i][v]=max{ dp[i1][v],dp[i1][vw[i]]+c[i]}(1in,w[i]vV)

公式(1)就是状态转移方程,代码如下

for(int i=1;i<=n;i++){
    for(int v=w[i];v<=V;v++){
        dp[i][v]=max(dp[i-1][v],dp[i-1][v-w[i]]+c[i]);
    }
}

优化:

状态转移方程中方程计算 d p [ i ] [ v ] dp[i][v] dp[i][v]总是只需要 d p [ i − 1 ] [ v ] dp[i-1][v] dp[i1][v]左侧部分数据,因此可以将二维数组减低为一维数组 d p [ v ] dp[v] dp[v],枚举方向改为 i i i从1到 n n n v v v V V V到0==(逆序!)==,状态转移方程为
d p [ v ] = m a x ( d p [ v ] , d p [ v − w [ i ] ] + c [ i ] ) ( 1 ≤ i ≤ n , w ≤ v ≤ V ) dp[v]=max(dp[v],dp[v-w[i]]+c[i])\\ (1\leq i\leq n,w\leq v\leq V) dp[

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值