51NOD 1043 幸运号码

32 篇文章 0 订阅

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
1个长度为2N的数,如果左边N个数的和 = 右边N个数的和,那么就是一个幸运号码。
例如:99、1230、123312是幸运号码。
给出一个N,求长度为2N的幸运号码的数量。由于数量很大,输出数量 Mod 10^9 + 7的结果即可。


Input
输入N(1<= N <= 1000)
Output
输出幸运号码的数量 Mod 10^9 + 7
Input示例
1
Output示例
9


dp水过
d[i][j]表示长度为i且和为j的数的个数(003这种0开头的也算)
d[i][j]=d[i-1][j]+d[i-1][j-1]+d[i-1][j-2]+……..+d[i-1][j-9];
分别表示:
长度为i-1且和为j的数后面添一个0
长度为i-1且和为j-1的数后面添一个1
……
长度为i-1且和为j-9的数后面添一个9

所以 长度为2*i,前i个数和=后i个数和=j 的方案数为(d[i][j]-长度为i以0开头且和为j的数个数)*d[i][j]
显然d[i-1][j] 可以看作是长度为i 第一个数为0 和为j的情况
所以 =(d[i][j]-d[i-1][j])*d[i][j]
每次只用到d[i],d[i-1]所以循环数组即可

#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define INF 1000000007
#define sci(a) scanf("%d",&a)
#define pri(a) printf("%d\n",a);

#define N 1005
int d[2][9*N],*d1,*d2;

int dp(int n){
    d1=d[0],d2=d[1];
    d1[0]=1;
    for(int i=1;i<=n;++i) {
        fill(d2,d2+9*n+1,0);
        for (int j = 0; j <= 9 * i; ++j)
            for (int k = 0; k < 10; ++k) {
                if (j - k < 0)
                    break;
                d2[j] = (d2[j] + d1[j - k]) % INF;
            }
        swap(d1,d2);
    }
    int res=0;
    for(int i=1;i<=9*n;++i)
        res=(res+(ll)d1[i]*(d1[i]-d2[i]))%INF;
    return res;
}

int main()
{
    int n;
    sci(n);
    pri(dp(n));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值