青蛙的约会
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 109814 Accepted: 22120
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
Source
浙江
显然 题目求最小的t (t >= 0)
满足
x + t*m = y + t*n (mod L)
令p为任意整数 A = n - m
, B = x - y
即:
t*A + p*L = B
d = gcd(A,L) = X*A + Y*L
显然对任意(t*A+p*L) % d==0
如果B%d!=0 则无解
令: k=B/d
则: X*k*A + Y*k*L=B
所以经过 t = X*k 步后 2青蛙坐标相同
但这并不是最终答案
因为lcm(A,L)=A*L/d
t*A + p*L + lcm - lcm = B
t*A + p*L + A*L/d - A*L/d = B
(t - L/d)*A + (p + A/d)*L = B
这样不停变换 就能一直得到了更小的 t
显然当t >= 0 时 t 的最小值为 (t % (L/d) + (L/d)) % (L/d)
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>
ll extend_gcd(ll a,ll b,ll&x,ll&y){
if(b==0){
x=1,y=0;
return a;
}
ll tx,ty,d;
d=extend_gcd(b,a%b,tx,ty);
x=ty;
y=tx-a/b*ty;
return d;
}
int main()
{
//freopen("/home/lu/文档/r.txt","r",stdin);
//freopen("/home/lu/文档/w.txt","w",stdout);
ll x,y,m,n,L;
ll X,Y,d;
scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&L);
ll A=n-m,B=x-y;
d=extend_gcd(A,L,X,Y);
if(n==m||B%d){
puts("Impossible");
}
else{
ll ans=X*B/d;
ll M=L/d;
ans=(ans%M+M)%M;
printf("%lld\n",ans);
}
return 0;
}