Codeforces 815C. Karen and Supermarket 【树形DP】

20 篇文章 0 订阅
4 篇文章 0 订阅
C. Karen and Supermarket
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

On the way home, Karen decided to stop by the supermarket to buy some groceries.

She needs to buy a lot of goods, but since she is a student her budget is still quite limited. In fact, she can only spend up to b dollars.

The supermarket sells n goods. The i-th good can be bought for ci dollars. Of course, each good can only be bought once.

Lately, the supermarket has been trying to increase its business. Karen, being a loyal customer, was given n coupons. If Karen purchases the i-th good, she can use the i-th coupon to decrease its price by di. Of course, a coupon cannot be used without buying the corresponding good.

There is, however, a constraint with the coupons. For all i ≥ 2, in order to use the i-th coupon, Karen must also use the xi-th coupon (which may mean using even more coupons to satisfy the requirement for that coupon).

Karen wants to know the following. What is the maximum number of goods she can buy, without exceeding her budget b?

Input

The first line of input contains two integers n and b (1 ≤ n ≤ 50001 ≤ b ≤ 109), the number of goods in the store and the amount of money Karen has, respectively.

The next n lines describe the items. Specifically:

  • The i-th line among these starts with two integers, ci and di (1 ≤ di < ci ≤ 109), the price of the i-th good and the discount when using the coupon for the i-th good, respectively.
  • If i ≥ 2, this is followed by another integer, xi (1 ≤ xi < i), denoting that the xi-th coupon must also be used before this coupon can be used.
Output

Output a single integer on a line by itself, the number of different goods Karen can buy, without exceeding her budget.

Examples
input
6 16
10 9
10 5 1
12 2 1
20 18 3
10 2 3
2 1 5
output
4
input
5 10
3 1
3 1 1
3 1 2
3 1 3
3 1 4
output
5
Note

In the first test case, Karen can purchase the following 4 items:

  • Use the first coupon to buy the first item for 10 - 9 = 1 dollar.
  • Use the third coupon to buy the third item for 12 - 2 = 10 dollars.
  • Use the fourth coupon to buy the fourth item for 20 - 18 = 2 dollars.
  • Buy the sixth item for 2 dollars.

The total cost of these goods is 15, which falls within her budget. Note, for example, that she cannot use the coupon on the sixth item, because then she should have also used the fifth coupon to buy the fifth item, which she did not do here.

In the second test case, Karen has enough money to use all the coupons and purchase everything.


------

,,DP  

g[u][i]=u,i,使

f[u][i]=u,i,使,u

f[u][i]=f[u][i+1](c[u]d[u])


g[u][i]=min{g[u][i],g[u][ij]+g[v][j]} | (0<=j<=i,vu)

f[u][i]=min{f[u][i],f[u][ij]+min(g[v][j],f[v][j])} | (0<=j<=i,vu)

f[u][i]=f[u][i1]+(c[u]d[u])


,DPO(n3)  
,size[u]=u  
u,size[u]=1,v,,size[u]+=size[v],...  
O(n2),u2,  
size[u]+=size[v],u,v,O(n3),v

#include<stdio.h>
#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define MEM(a,x) memset(a,x,sizeof(a))
#define lowbit(x) ((x)&-(x))

using namespace std;

const int inf=0x3f3f3f3f;
const int N = 5e3+5;

vector<int>G[N];
int c[N],d[N],f[N][N],g[N][N],size[N];

void init(){
    MEM(f,0x3f);
    MEM(g,0x3f);
    MEM(size,0);
    for(int i=0;i<N;++i){
        G[i].clear();
        f[i][0]=g[i][0]=0;
    }
}

void dp(int u,int n){
    g[u][1]=c[u];
    size[u]=1;
    for(auto v:G[u]){
        dp(v,n);
        //size[u]+=size[v]; 放这里O(n^3)
        for(int i=size[u];i>=0;--i){
            for(int j=size[v];j>=0;--j){
                g[u][i+j]=min(g[u][i+j],g[u][i]+g[v][j]);
                if(i!=0){
                    f[u][i+j-1]=min(f[u][i-1+j],f[u][i-1]+min(g[v][j],f[v][j]));
                }
            }
        }
        size[u]+=size[v];//O(n^2)
    }
    for(int i=size[u];i>=1;--i){
        f[u][i]=f[u][i-1]+c[u]-d[u];
    }
}

int main()
{
    //freopen("/home/lu/code/r.txt","r",stdin);
    int n,b;
    while(~scanf("%d%d",&n,&b)){
        init();
        scanf("%d%d",&c[0],&d[0]);
        for(int i=1;i<n;++i){
            int x;
            scanf("%d%d%d",&c[i],&d[i],&x);
            G[x-1].push_back(i);
        }
        dp(0,n);
        for(int i=n;i>=0;--i){
            if(f[0][i]<=b||g[0][i]<=b){
                printf("%d\n",i);
                break;
            }
        }
    }
    return 0;
}


引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值