【2017多校】HDU6053 TrickGCD 【莫比乌斯】

4 篇文章 0 订阅
1 篇文章 0 订阅

gcd(l,r)=d,b[i]{d,2d,3d,...,floor(a[i]/d)d}
gcd(l,r)=d,=ni=1a[i]d

mu[i]=1kk=i
ans=ni=1{(mu[i])nj=1a[j]i}

O(n2)

sum[i]=nj=1(a[j]<=i)
i,k,a[j]i=kjsum[(k+1)i1]sum[ki1]
gcd=i=n/ik=1ksum[(k+1)i1]sum[ki1]

ans=ni=1k=n/ik=1ksum[(k+1)i1]sum[ki1]

O(nlogn(1+12+13+...))=O(nlogn)=...O(nlogn(ln(n+1)+r))

#include<stdio.h>
#include<iostream>
#include<stdlib.h>
#include<algorithm>
#include<vector>
#include<string.h>
#include<string>
#include<math.h>
#include<memory.h>
#include<queue>
#define ll long long
#define pii pair<int,int>
#define pll pair<ll,ll>
#define MEM(a,x) memset(a,x,sizeof(a))
#define lowbit(x) ((x)&-(x))

using namespace std;

//const int inf=0x3f3f3f3f;
const int MOD = 1e9+7;
const int N = 1e5 + 5;
const int inf=MOD;

const int MAXN = 100000;
bool check[MAXN+10];
int prime[MAXN+10];
int mu[MAXN+10];
void Moblus()
{
    memset(check,false,sizeof(check));
    mu[1] = 1;
    int tot = 0;
    for(int i = 2; i <= MAXN; i++)
    {
        if( !check[i] ){
            prime[tot++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot; j++)
        {
            if(i * prime[j] > MAXN) break;
            check[i * prime[j]] = true;
            if( i % prime[j] == 0){
                mu[i * prime[j]] = 0;
                break;
            }else{
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
}

int sum[N];
int a[N];

ll qPow(ll a,int n){
    ll ans=1;
    ll t=a%MOD;
    while(n){
        if(n&1){
            ans=(ans*t)%MOD;
        }
        n>>=1;
        t=(t*t)%MOD;
    }
    return ans;
}

ll w(int x,int n){
    if(sum[x-1]){
        return 0;
    }
    ll ans=1;
    for(int i=1;i*x<N-1;++i){
        ll t=qPow(i,sum[min((i+1)*x-1,N-1)]-sum[min(N-1,i*x-1)]);
        ans=(ans*t)%MOD;
    }
    return ans;
}

ll slove(int n){
    ll ans=0;
    for(int i=2;i<=n;++i){
        ans+=(-w(i,n)*mu[i])%MOD;
        ans%=MOD;
    }
    return (ans+MOD)%MOD;
}

int main()
{
    //freopen("/home/lu/code/r.txt","r",stdin);
    Moblus();
    int T;
    scanf("%d",&T);
    for(int tt=1;tt<=T;++tt){
        int n;
        MEM(sum,0);
        scanf("%d",&n);
        for(int i=1;i<=n;++i){
            scanf("%d",&a[i]);
            ++sum[a[i]];
        }
        for(int i=1;i<N;++i){
            sum[i]+=sum[i-1];
        }
        printf("Case #%d: %lld\n",tt,slove(n));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值