HDU3507 Print Article 【斜率优化DP】

本文介绍了一种结合动态规划与队列优化算法解决特定问题的方法。通过维护一个单调队列来实现高效的动态规划更新过程,确保每个点仅进出队列一次,从而达到线性时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门


sum[i]=ij=0c[j]
d[i]=min{d[j]+M+(sum[i]sum[j])2 | j<i }
d[a]+M+(sum[i]sum[a])2<d[b]+M+(sum[i]sum[b])2
d[a]+sum[a]2(d[b]+sum[b]2)<2sum[i](sum[a]sum[b])
y[j]=d[j]+sum[j]2,x[j]=2sum[j]
g[a][b]=y[a]y[b]x[a]x[b]
ab(ab)>g[a][b]<sum[i]

d[i]=min{d[j]+M+(sum[i]sum[j])2 | j<i }j
g[a][b]
j1,j2,j3,...(j1<j2<j3),g[j2][j1]<sum[i],j2j1,sum[k]>=sum[i] (k>i),a,
,g[j2][j1]>sum[i],j1
i,g[i][jm]<g[jm][jm1]
g[i][jm]<sum[i],ijm,sum[k]>=sum[i] (k>i),ijm
g[i][jm]>=sum[i],g[jm][jm1]>g[i][jm]>=sum[i],jm1jm
,g[i][jm]<g[jm][jm1],jm,
,g[i][jm]>g[jm][jm1],i

O(n)

//hdu3507
#include<stdio.h>
#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define pll pair<ll,ll>
#define MEM(a,x) memset(a,x,sizeof(a))
#define lowbit(x) ((x)&-(x))

using namespace std;

const int inf = 1e9+7;
const int N = 500000 + 50;

int sum[N],d[N];

//[ Y(k)-Y(j) ] / [ X(k)-X(j) ] <  Val(i)
int Y(int i){//分子
    return d[i]+sum[i]*sum[i];
}

int X(int i){//分母
    return 2*sum[i];
}

int Val(int i){
    return sum[i];
}

bool judge(int a,int b,int i){//b优于a? g[b][a]<val[i]
    return Y(b)-Y(a)<=Val(i)*(X(b)-X(a));
}

//g[d][c]=( Y(d)-Y(c) ) / ( X(d)-X(c) )
bool maintain(int a,int b,int c){//将c放入队列 需要删除b? return g[c][b]<=g[b][a]
    return (Y(c)-Y(b))*(X(b)-X(a))<=(Y(b)-Y(a))*(X(c)-X(b));
}

int getDp(int j,int i,int val){
    return d[j]+val+(sum[i]-sum[j])*(sum[i]-sum[j]);
}

int dp(int n,int m){
    deque<int>que;
    que.push_front(0);
    for(int i=1;i<=n;++i){
        while(que.size()>=2&&judge(que[0],que[1],i)){
            que.pop_front();
        }
        d[i]=getDp(que[0],i,m);
        while(que.size()>=2&&maintain(que[que.size()-2],que.back(),i)){
            que.pop_back();
        }
        que.push_back(i);
    }
    return d[n];
}

int main(){
    //freopen("/home/lu/code/r.txt","r",stdin);
    //freopen("/home/lu/code/w.txt","w",stdout);
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        sum[0]=d[0]=0;
        for(int i=1;i<=n;++i){
            scanf("%d",&sum[i]);
            sum[i]+=sum[i-1];
        }
        printf("%d\n",dp(n,m));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值