本文将同步发布于:
题目
题意简述
给定 n n n 个集合 S 1 ∼ n S_{1\sim n} S1∼n,问是否存在 i , j i,j i,j 满足 i ≠ j i\neq j i=j 且 ∣ S i ∩ S j ∣ ≥ 2 \left\lvert S_i\cap S_j\right\rvert\geq 2 ∣Si∩Sj∣≥2。
若存在,输出 i , j i,j i,j(任意一对都可);否则输出 − 1 -1 −1。
n ≤ 1 0 5 n\leq 10^5 n≤105, ∑ i = 1 n ∣ S i ∣ ≤ 2 × 1 0 5 \sum\limits_{i=1}^n\left\lvert S_i\right\rvert\leq 2\times 10^5 i=1∑n∣Si∣≤2×105。
题解
图论转化
直接思考有点难,考虑经典套路,我们把这个问题转化成二分图模型。
对于一个集合 S i S_i Si,我们将其构造为一个左部点 i i i。
对于一个元素