「题解」CF1468M Similar Sets

本文介绍了如何将 Codeforces 1468M 题目的相似集合问题转化为图论问题,通过构建二分图模型并进行按点度数的分治策略,寻找四元环。文章详细阐述了度数分治的方法,并分析了算法的时间复杂度。
摘要由CSDN通过智能技术生成

本文将同步发布于:

题目

题目链接:洛谷CF1468M

题意简述

给定 n n n 个集合 S 1 ∼ n S_{1\sim n} S1n,问是否存在 i , j i,j i,j 满足 i ≠ j i\neq j i=j ∣ S i ∩ S j ∣ ≥ 2 \left\lvert S_i\cap S_j\right\rvert\geq 2 SiSj2

若存在,输出 i , j i,j i,j(任意一对都可);否则输出 − 1 -1 1

n ≤ 1 0 5 n\leq 10^5 n105 ∑ i = 1 n ∣ S i ∣ ≤ 2 × 1 0 5 \sum\limits_{i=1}^n\left\lvert S_i\right\rvert\leq 2\times 10^5 i=1nSi2×105

题解

图论转化

直接思考有点难,考虑经典套路,我们把这个问题转化成二分图模型。

对于一个集合 S i S_i Si,我们将其构造为一个左部点 i i i

对于一个元素

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值