数组篇(四)

数组篇(四)

——代码随想录刷题思考及感悟

螺旋矩阵2

59. 螺旋矩阵 II

首先在定义该二维矩阵中通过查找资料在官方文档发现:

vector< vector > v(m, vector(n) )

定义了一个vector容器,元素类型为vector,初始化为包含m个vector对象,每个对象都是一个新创立的vector对象的拷贝,而这个新创立的vector对象被初始化为包含n个0。

因此:从结果上看,类似于创建了一个m×n的二维数组,而且可以通过v[i][j]的方式来访问元素(vector支持下标访问元素)。

思路

这里需要先在纸上或脑海里构建一个上3*3和4*4的矩阵,这是会出现的两种情况,然后我们采用左闭右开的提取方式,这样可以保证每次的循环长度都是固定的。——采取前面二分法提到的,多种循环时要去寻找循环不变量

过程:

  1. 分成上下左右四个部分;
  2. 在写循环时确定需要的变量——两个二维坐标、圈数、边界宽度、赋值
  3. 在模拟循环过程中,找到边界判定——
  • 上:i不变,j递增,边界随圈数减少而减2
  • 右:j不变,i递增
  • 下:i不变,j递减
  • 左:j不变,i递减
  1. 关键点:

    i < Start_x + n - border
    j < Start_y + n - border
    
  2. 循环跳出条件——while循环(当圈数为0即可跳出)

代码:

class Solution {
public:
    vector<vector<int>> generateMatrix(int n) {
        vector<vector<int>> V(n, vector<int>(n));//确定整体阶段为左闭右开
        int Start_x = 0; 
        int Start_y = 0; //定义初始坐标
        int mid = n/2; //定义最中心的点
        int circle = n/2; //定义所绕圈数
        int count = 1; //初始点的值
        int border = 1;
        int i, j;
        while(circle--){
            i = Start_x;
            j = Start_y;
            for(j = Start_y; j < Start_y + n - border ; j++){
                V[Start_x][j] = count ++;
            }
            for(i = Start_x; i < Start_x + n - border; i++){
                V[i][j] = count++; 
            }
            for(j = Start_y + n - border; j > Start_y; j--){
                V[i][j] = count++;
            }
            for(i =  Start_x + n - border; i > Start_x; i--){
                V[i][j] = count++;
            }
            Start_x++;
            Start_y++;
            border += 2;
        }
        if (n%2){
            V[mid][mid] = count;
        }
        return V;
    }
};

衍生题目

螺旋矩阵

54. 螺旋矩阵

这道题是和上一道与之相反的一道,从已经构建好的矩阵中按按顺时针读取,但不相同的是:

该题目中的数字顺序不是顺时针,因此将matrix视作矩阵后,从左至右,依次push_back,由于考虑到不一定是正方矩阵,是M*N的,所以每个循环后都加上一个判断条件——当大于该矩阵长度或宽度时,跳出循环。

注意,当为空矩阵时要单独设出来。

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
    vector<int> v; 
    int n = matrix[0].size();    
    if(matrix.empty()) return v;
    int Stack_x = 0;
    int Stack_y = 0;
    int border_x = matrix.size() - 1;//矩阵的宽度
    int border_y = matrix[0].size() - 1;//矩阵的长度
    int i, j; 
    while(true){
        for(j = Stack_y; j <= border_y; ++j){
            v.push_back(matrix[Stack_x][j]);
        }
        if(++Stack_x > border_x) break;
        for(i = Stack_x; i <= border_x; ++i){
            v.push_back(matrix[i][border_y]);
        }
        if(--border_y < Stack_y) break;
        for(j = border_y; j >= Stack_y; --j){
            v.push_back(matrix[border_x][j]);
        }
        if(--border_x < Stack_x) break;
        for(i = border_x; i >= Stack_x; --i){
            v.push_back(matrix[i][Stack_y]);
        }
        if(++Stack_y > border_y) break;
    }
    return v;
    }
};

根据leetcode题解——这个按层分析,逐层遍历的方法也较为简单
代码:

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        if (matrix.size() == 0 || matrix[0].size() == 0) {
            return {};
        }

        int rows = matrix.size(), columns = matrix[0].size();
        vector<int> order;
        int left = 0, right = columns - 1, top = 0, bottom = rows - 1;
        while (left <= right && top <= bottom) {
            for (int column = left; column <= right; column++) {
                order.push_back(matrix[top][column]);
            }
            for (int row = top + 1; row <= bottom; row++) {
                order.push_back(matrix[row][right]);
            }
            if (left < right && top < bottom) {
                for (int column = right - 1; column > left; column--) {
                    order.push_back(matrix[bottom][column]);
                }
                for (int row = bottom; row > top; row--) {
                    order.push_back(matrix[row][left]);
                }
            }
            left++;
            right--;
            top++;
            bottom--;
        }
        return order;
    }
};

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值