L3-002 特殊堆栈

题目链接

思路:
用multset(允许重复出现的set集合)维护两个堆l、r,l存前半段数字,r存后半段数字,当栈中元素数为奇数l.size() == r.size,当栈中元素数为偶数时l.size() == r.size + 1,*(l.end() - 1)即为中位数,注意:每次判断时都要先验证堆或栈中是否为空。

代码:

#include <bits/stdc++.h>
#define fastio ios::sync_with_stdio(false), cin.tie(NULL), cout.tie(NULL)
#define debug(a) cout << "debug : " << (#a) << " = " << a << endl

using namespace std;

typedef long long ll;
typedef pair<int, string> PII;

const int N = 1e4 + 10;
const int INF = 0x3f3f3f3f;
const double eps = 1e-6;
const int mod = 998244353;

multiset<int> l, r;
stack<int> sk;

void adjust()
{
    while (l.size() < r.size())
    {
        int t = *r.begin();
        r.erase(r.begin());
        l.insert(t);
    }
    while (l.size() - 1 > r.size())
    {
        auto it = l.end();
        it--;
        r.insert(*it);
        l.erase(it);
    }
}

int main()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        string op;
        cin >> op;
        if (op == "Pop")
        {
            if (sk.empty())
                cout << "Invalid" << endl;
            else
            {
                int del = sk.top();
                cout << del << endl;
                sk.pop();
                if (r.size() && del < *(r.begin()) && l.size()) //这里判断时需要验证一下两堆中是否有元素
                    l.erase(l.find(del));
                else if (r.size())
                    r.erase(r.find(del));
                adjust();
            }
        }
        else if (op == "PeekMedian")
        {
            if (sk.empty())
                cout << "Invalid" << endl;
            else
            {
                auto it = l.end();
                it--;
                cout << *it << endl;
            }
        }
        else
        {
            int x;
            cin >> x;
            sk.push(x);
            if (r.empty() || x < *r.begin())
                l.insert(x);
            else
                r.insert(x);
            adjust();
        }
    }

    return 0;
}
题目描述 本题要求实现一个特殊堆栈,除了常规的入栈和出栈操作外,还需要支持以下操作: peek:取出栈顶元素,但是不弹出; min:返回当前栈中的最小值; max:返回当前栈中的最大值。 输入格式 输入第一行给出一个正整数 N(≤10^5),是操作数。以下 N 行每行包含一个操作指令,格式如下: push key:将 key 插入堆栈; pop:弹出栈顶元素; peek:取出栈顶元素,但是不弹出; min:返回当前栈中的最小值; max:返回当前栈中的最大值。 这里假设堆栈中没有重复元素,且输入保证不会出现不合法的操作。 输出格式 对于每个 min 和 max 操作,输出该操作返回的值,如果堆栈为空则输出 ERROR。 输入样例 10 push 3 push 2 push 1 max pop max pop max pop max 输出样例 3 2 3 1 ERROR 算法1 (单调栈) $O(n)$ 首先,我们需要一个普通的栈来实现入栈和出栈操作。 然后,我们需要维护一个单调递减的栈,来实现最小值的查询。每次入栈时,如果当前元素小于等于栈顶元素,就将其入栈。否则,我们需要将栈顶元素弹出,直到栈顶元素小于等于当前元素,再将当前元素入栈。 同理,我们也需要维护一个单调递增的栈,来实现最大值的查询。 对于 peek 操作,我们只需要返回栈顶元素即可。 时间复杂度 每个元素最多入栈一次,出栈一次,查询一次最小值和最大值,因此总时间复杂度为 $O(n)$。 C++ 代码 算法2 (双向队列) $O(n)$ 我们可以使用双向队列来维护最小值和最大值。队列中的元素是一个二元组,第一个元素是值,第二个元素是该值在栈中的出现次数。 每次入栈时,我们需要将该元素插入到双向队列中。同时,我们需要维护队列的单调性。对于最小值队列,我们需要保证队列中的元素是单调递增的。对于最大值队列,我们需要保证队列中的元素是单调递减的。 每次出栈时,我们需要将该元素从双向队列中删除。同时,我们也需要更新队列的单调性。 对于 min 和 max 操作,我们只需要返回最小值队列和最大值队列的队首元素即可。 时间复杂度 每个元素最多入队一次,出队一次,查询一次最小值和最大值,因此总时间复杂度为 $O(n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值