查询表

查询表:

1、Map接口

2、HashMap

3、Map的遍历

4、有序的Map

Map接口:

1、Map接口定义的集合称为查找表,用于存储所谓的“Key-Value”映射对。Key可以看成是Value的索引,作为Key的对象在集合中不可以重复。

2、根据内部数据结构的不同,Map接口有很多种实现类,其中常用的有内部类为hash表实现的HashMap和内部类为排序二叉树实现的TreeMap。

3、put方法:

Map接口中定义了向Map中存放元素的put方法:

---V put(K key,V value)

将Key-Value对存入Map,如果在集合中已经包含该Key,则操作将替换该Key所对应的Value,返回值为该Key原来所对应的Value(如果没有则返回null)。

无论put,remove还是get都是先利用hashCode计算桶的位置,再利用equals比较元素的位置。

4、get方法:

Map接口中定义了从Map中获取元素的get方法:

---V get(Object key)

返回参数key所对应的Value对象,如果不存在则返回null。

5、containsKey()方法

Map接口中定义了判断某个key是否在Map中存在:

---boolean containsKey(Object key):

若Map中包含给定的key值则返回true,否则返回false。

该方法可以用get方法替代,如果为null就是不存在,如果不为null,就是存在。

6、使用数组的下标定位访问,性能非常好。

根据keyhashCode()通过算法映射到数组下标的查找对象的方法。

7、作为Map中的key一定要很好的实现equals和hashCode,equals和hashCode一定要成对实现,就是当两个对象equals相等时候一定具有相同的hashCode。如果两个对象不相等的时候尽量具有不同的hashCode。

8、如果hashCode的值不稳定,或者没有成对重写,会造成HashMap的工作故障。所以hashCode的值不能更改。

        public void testHashCode() {
		String s1="Tom";
		String s2=new String("Tom");
		String s3="Jerry";
		String s4="Andy";
		//equals的值是true的时候,hashCode的值是一样的
		System.out.println(s1.equals(s2));//true
		System.out.println(s1.hashCode());//84274
		System.out.println(s2.hashCode());//84274
		
		//equals的值是false的时候,hashCode的值一般是不一样的
		System.out.println(s3.equals(s4));//false
		System.out.println(s3.hashCode());//71462654
		System.out.println(s4.hashCode());//2045346
		//hashCode()是稳定不变的,每个人的电脑上的值都是一样的
	}	

HashMap

1、散列表插入过程(put):

获得key的hashCode(),利用散列算法映射到散列表数组中“散列桶”的位置,遍历散列桶,使用key.equals()方法逐一比较key,确定位置添加(替换)数据。

2、散列表查找过程(get):

根据key查找value(数据):获得key的hashCode(),利用散列算法映射到散列表数组中“散列桶”的位置,获取这个位置的数据(value),如果没有数据,就返回null。

        public void testHashMap() {
		Map<User,String> map=new HashMap<User,String>();
		User tom=new User(1,"Tom");
		map.put(tom, "百花深处胡同");
		User jerry=new User(2,"Jerry");
		map.put(jerry, "灵境胡同");
		System.out.println(map);//{1,Tom=百花深处胡同, 2,Jerry=灵境胡同}
		jerry.id=8;//输出结果为:{1,Tom=百花深处胡同, 8,Jerry=灵境胡同},没有被删除,是因为hashCode变化了,造成了不稳定,所以删除不了
		map.remove(jerry);//删除成功,如果改动了id,删除就失败
		System.out.println(map);//{1,Tom=百花深处胡同}
	}
	//建立一个User类
	class User{
		int id;
		String name;
		public User(int id,String name) {
			this.id=id;
			this.name=name;
		}
		//重写equals方法
		public boolean equals(Object obj) {
			if(obj==null) {
				return false;
			}
			if(this==obj) {
				return true;
			}
			if(obj instanceof User) {
				User o=(User)obj;
				return this.id==o.id;
			}
			return false;
		}
		//重写hashCode方法
		public int hashCode() {
			return id;
		}
		//重写tiString方法
		public String toString() {
			return id+","+name;
		}
	}

3、 装载因子及HashMap优化

1、Capacity:容量,hash表里bucket(桶)的数量,也就是散列数组大小

2、Initial capacity:初始容量,创建hash表时,初始bucket的数量,默认构建容量是16,也可以使用特定容量。

3、Size:大小,当前散列表中存储数据的数量。

4、Load factor:加载因子,默认值是0.75(就是75%),是散列表中的元素数量和散列表容量的最大比值,一旦实际的比值超过加载因子,散列表将扩容并重新散列,减少重新散列次数将有助于提高散列表性能

5、性能优化:加载因子较小时,散列查找性能会提高,同时也浪费了散列桶的空间容量。0.75是性能和空间相对平衡结果。在创建散列表时指定合理容量,减少rehash提高性能。

4、 散列表的查找次数不会超过3次。

public void testHashMap() {
		//线性表
		List<String> list=new ArrayList<String>();
		//散列表
		Map<String,Integer> map=new HashMap<String,Integer>(14000);//让比值不超75%
		
		for(int i=0;i<10000;i++) {
			String key=UUID.randomUUID().toString();//产生不一样的字符串
			list.add(key);
			map.put(key, i);
		}
		String key=list.get(9999);
		System.out.println(key);//5ee38ba0-055b-45f5-9ae4-f2093fe13ac7
		//查找生成key对应的位置i
		long t1=System.nanoTime();
		for(int i=0;i<10000;i++) {//利用线性表查找到key对应的时间:583001813
			int index=list.indexOf(key);
		}
		long t2=System.nanoTime();
		for(int i=0;i<10000;i++) {//利用hashMap查找到key所对应的时间:321991
			int ind=map.get(key);
		}
		long t3=System.nanoTime();
		System.out.println((t2-t1)+","+(t3-t2));
	}

Map的遍历:

如果利用key找value达不到我们的计算目的,我们需要将每个元素都单独处理的时候,就涉及到遍历。

1、利用keyset()方法:模式化的方法

Map提供了三种遍历方式:

1、 遍历所有的key

遍历所有的key的方法:

---Set<K> keySet()

---该方法会将当前Map中所有的key存入一个Set集合后返回。

2、 遍历所有的key-value

3、 遍历所有的value(不常用)

2、为什么要对Map进行迭代?

1、 因为Map提供的算法不能满足要求的时候,就需要使用迭代实现算法。比如对Map的内容进行自定义格式输出

2、 如何迭代?

    1、 利用Key进行迭代

    2、 利用Entry(Kety:Value)进行迭代

    entrySet()返回Entry集合:集合中每个元素都是Entry对象,只要迭代这个集合就是迭代map集合,每个条目元素包含(key,    value)两个属性。模式化的方法

    3、 对Value进行迭代(很少用)

3、 迭代的代码是模式化的。

public void testPm25() {
		//计算监测站pm2.5最大值
		String pm25="农展馆=523,东四=378,丰台花园=406,农展馆=505,东四=406";
		//利用散列表中的key不能重复的特征,将地点作为key,pm2.5的max值作为value存储到散列表,实现数据的统计。
		Map<String,Integer> map=new HashMap<String,Integer>();
		//拆分原始数据
		//迭代原始数据,比较是否为最大值,将数据填充到散列表中,统计结果。 
		String[] data=pm25.split("[,=]");//以,和=拆分
		System.out.println(Arrays.toString(data));//[农展馆, 523, 东四, 378, 丰台花园, 406, 农展馆, 505, 东四, 406]
		                                        //     0      1    2    3     4         5     6      7    8    9
		for(int i=0;i<data.length;i+=2) {
			String location=data[i];//i对应的是0、2、4、6...是地址
			int value=Integer.parseInt(data[i+1]);//i+1对应的是1、3、5...是pm2.5的值
			if(map.containsKey(location)) {
				//如果包含这个地点,就说明这个地点已经统计过,这次需要取回上次的结果,跟本次比较。将最大值写回。
				int v=map.get(location);
				map.put(location, Math.max(value, v));
			}else {
				//不包含这个地点,说明是第一次统计
				map.put(location, value);
			}
		}
		System.out.println(map);//{农展馆=523, 东四=406, 丰台花园=406}
		//利用key的迭代,实现将map的结果进行输出
		//1、得到所有key的集合
		//2、迭代key的集合
		//3、在迭代时候可以利用get获取value
		System.out.println("利用key的迭代输出:");
		Set<String> keys=map.keySet();
		//keys包含所有的地点
		for(String loc:keys) {
			int val=map.get(loc);
			System.out.println(loc+"|"+val);
		}
		//第二种方法:利用Entry
		//利用Entry(条目)Set进行迭代
		Set<Entry<String,Integer>> set=map.entrySet();
		//Entry<String,Integer>,这里的泛型:表示集合中的元素是Entry类型,而Entry中属性是String类型和Integer类型。
		for(Entry<String,Integer> e:set) {//每个Entry中Key是String类型,Value是Integer类型
			String loc=e.getKey();//e中的key就是统计地点
			int val=e.getValue();//e中的value就是pm2.5的值
			System.out.println(loc+"|"+val);
		}
	}

有序的Map

1、LinkedHashMap实现有序Map

    1、使用Map接口的哈希表和链表实现,具有可预知的迭代顺序。此实现与HashMap的不同之处在于:LinkedHashMap维护着一个双向循环列表。此链表定义了迭代顺序,该迭代顺序通常就是存放元素的顺序。

    2、需要注意的是,如果在Map中重新存入已有的key,那么key的位置不会发生改变,只是将value值替换。

2、LinkedHashMap PK HashMap

LinkedHashMap:能够利用链表保持元素的添加顺序

HashMap:是散列顺序,不能保持元素的顺序

public void testLinkedHashMap() {
		String pm25="农展馆=423,东四=378,丰台花园=406,农展馆=320,东四=406,青岛=230";
		Map<String,Integer> map=new LinkedHashMap<String,Integer>();
		String data[]=pm25.split("[,=]");
		for(int i=0;i<data.length;i+=2) {
			String location=data[i];
			int value=Integer.parseInt(data[i+1]);
			if(map.containsKey(location)) {
				//如果包含这个地点,就说明这个地点已经统计过,这次需要取回上次的结果,跟本次比较。将最大值写回。
				int v=map.get(location);
				map.put(location, Math.max(value, v));
			}else {
				//不包含这个地点,说明是第一次统计
				map.put(location, value);
			}
		}
		System.out.println(map);//{农展馆=423, 东四=406, 丰台花园=406, 青岛=230},与元素输入的顺序一样
	}

扩展:Random random=new Random(1);1是随机数种子seed

1、 当使用new Random(1)创建随机数发生器,产生的随机数固定的序列。可以实现随机场景重现。

2、 如果种子一样,则随机数序列是一样的。

3、 newRandom()实际上是new Random(当前时间)

public void testRandom() {
		//种子一样,产生的随机数列一样
		Random r1=new Random(1);
		System.out.print(r1.nextInt(10)+" ");
		System.out.print(r1.nextInt(10)+" ");
		System.out.print(r1.nextInt(10)+" ");
		System.out.print(r1.nextInt(10)+" ");
		System.out.println(r1.nextInt(10)+" ");//5 8 7 3 4 
		Random r2=new Random(1);
		System.out.print(r2.nextInt(10)+" ");
		System.out.print(r2.nextInt(10)+" ");
		System.out.print(r2.nextInt(10)+" ");
		System.out.print(r2.nextInt(10)+" ");
		System.out.println(r2.nextInt(10)+" ");//5 8 7 3 4 
	}

面试问题:

知道:集合 集合框架   集合类   容器类

1、ArrayList:变长数组算法实现的线性表,最常用

HashMap:是查询性能优化,适合根据key查找value

2、Collection:集合

|---List 最常用的接口

|    |---ArrayList  变长数组算法

|    |---Vector和ArrayList一样,变长数组算法,是早期的

|    |---LinkedList 双向循环链表算法

|---Set 数学集合,无序不重复

|    |---HashMap:内部是一个HashMap:只保留了key部分,value被屏蔽了

3、 Map:映射 查找表

|---HashMap 散列表算法 

|---Hashtable 散列表算法 稍慢  早期的

接口最常用的是:List和Map

类最常用的是:ArrayList和HashMap



智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值