代码随想录Day 17| 642.最大二叉树、617.合并二叉树、700.二叉搜索树的搜索、98.验证二叉搜索树

提示:DDU,供自己复习使用。欢迎大家前来讨论~


二叉树 Part05

构造二叉树类的题目,尝试使用前序遍历(中左右),先构造中间节点,再构造左子树,最后右子树

二、题目

题目一:642.最大二叉树

654. 最大二叉树

解题思路:

最大二叉树的构建过程如下:

654.最大二叉树

递归法

递归三部曲:

  1. 确定递归函数的参数和返回值

    //参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。
    TreeNode* constructMaximumBinaryTree(vector<int>& nums)
    
  2. 确定终止条件

    当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。

    TreeNode* node = new TreeNode(0);
    if (nums.size() == 1) {
        node->val = nums[0];
        return node;
    }
    
  3. 确定单层递归的逻辑

    这里有三步工作:

    1. 先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

      int maxValue = 0;
      int maxValueIndex = 0;
      for (int i = 0; i < nums.size(); i++) {
          if (nums[i] > maxValue) {
              maxValue = nums[i];
              maxValueIndex = i;
          }
      }
      TreeNode* node = new TreeNode(0);
      node->val = maxValue;
      
    2. 最大值所在的下标左区间 构造左子树

      // 这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。
      if (maxValueIndex > 0) {
          vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
          node->left = constructMaximumBinaryTree(newVec);
      }
      
    3. 最大值所在的下标右区间 构造右子树

      // 判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。
      if (maxValueIndex < (nums.size() - 1)) {
          vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
          node->right = constructMaximumBinaryTree(newVec);
      }
      

完整代码如下:

==细节:==注意这里的区间是左闭右开的

class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        TreeNode* node = new TreeNode(0);
        if (nums.size() == 1) {
            node->val = nums[0];
            return node;
        }
        // 找到数组中最大的值和对应的下标
        int maxValue = 0;
        int maxValueIndex = 0;
        for (int i = 0; i < nums.size(); i++) {
            if (nums[i] > maxValue) {
                maxValue = nums[i];
                maxValueIndex = i;
            }
        }
        node->val = maxValue;
        // 最大值所在的下标左区间 构造左子树 注意这里的区间是左闭右开的
        if (maxValueIndex > 0) {
            vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
            node->left = constructMaximumBinaryTree(newVec);
        }
        // 最大值所在的下标右区间 构造右子树
        if (maxValueIndex < (nums.size() - 1)) {
            vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
            node->right = constructMaximumBinaryTree(newVec);
        }
        return node;
    }
};

题目二: 617.合并二叉树

[617. 合并二叉树](https://leetcode.cn/problems/path-sum/)

解题思路

  • 同时遍历两个二叉树,在第一个二叉树的基础上,进行更新。也可以创建一个新的二叉树,用来存储最后的结果。
  • 其实和遍历一个树逻辑是一样的,只不过传入两个树的节点,同时操作。

递归法:

本题的操作流程动画:(这道题目的操作还是很简单的)

617.合并二叉树
  1. 确定递归函数的参数和返回类型

​ 首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

  • TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
    
  1. 确定终止条件

​ 因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

  • if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
    if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
    
  1. 确定单层递归的逻辑

​ 单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

那么单层递归中,就要把两棵树的元素加到一起。

  • t1->val += t2->val;
    t1->left = mergeTrees(t1->left, t2->left);
    t1->right = mergeTrees(t1->right, t2->right);
    return t1;
    

完整的代码如下:

这道题的采用前、中、后序都是可以的。

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->val += t2->val;                             // 中
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

题目三:700.二叉搜索树中的搜索

700. 二叉搜索树中的搜索

解题思路:

二叉搜索树的特性,自带顺序,不需要考虑遍历的顺序了。

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

递归法:

  1. 确定递归函数的返回值和参数

    TreeNode* search(TreeNode* root,int target){};
    
  2. 确定终止条件

    if(root==NULL || root->val == target) retrurn root;
    
  3. 确定单层循环逻辑

    //因为有返回值,创建变量来接收一下
    TreeNode* result = NULL;
    if(root->val > target) result = search(toot->left,target);
    if((root->val < target) result = search(toot->right,target);
    return root;        
    

完整代码:

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if (root == NULL || root->val == val) return root;
        TreeNode* result = NULL;
        if (root->val > val) result = searchBST(root->left, val);
        if (root->val < val) result = searchBST(root->right, val);
        return result;
    }
};

//或者这样写
class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if (root == NULL || root->val == val) return root;
        if (root->val > val) return searchBST(root->left, val);
        if (root->val < val) return searchBST(root->right, val);
        return NULL;
    }
};

迭代法:

​ 一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。

例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。

中间节点如果大于3就向左走,如果小于3就向右走,如图:

二叉搜索树

接下来可以递归了,代码如下(学到现在,第一次见这么==简单的迭代的代码==):

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        while (root != NULL) {
            if (root->val > val) root = root->left;
            else if (root->val < val) root = root->right;
            else return root;
        }
        return NULL;
    }
};

小结:

​ 本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。所以针对二叉搜索树的题目,一样要利用其特性。文中出递归和迭代两种方式,可以看出写法都非常简单,就是利用了二叉搜索树有序的特点

题目四:98.验证二叉搜索树

98.验证二叉搜索树

解题思路:

要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。

有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。

递归法:

可以递归中序遍历将二叉搜索树转变成一个数组,代码如下:

vector<int> vec;
void traversal(TreeNode* root) {
    if (root == NULL) return;
    traversal(root->left);
    vec.push_back(root->val); // 将二叉搜索树转换为有序数组
    traversal(root->right);
}

然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素

traversal(root);
for (int i = 1; i < vec.size(); i++) {
    // 注意要小于等于,搜索树里不能有相同元素
    if (vec[i] <= vec[i - 1]) return false;
}
return true;

整体代码:

class Solution {
private:
    vector<int> vec;
    void traversal(TreeNode* root) {
        if (root == NULL) return;
        traversal(root->left);
        vec.push_back(root->val); // 将二叉搜索树转换为有序数组
        traversal(root->right);
    }
public:
    bool isValidBST(TreeNode* root) {
        vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
        traversal(root);
        for (int i = 1; i < vec.size(); i++) {
            // 注意要小于等于,搜索树里不能有相同元素
            if (vec[i] <= vec[i - 1]) return false;
        }
        return true;
    }
};

以上代码中,我们把二叉树转变为数组来判断,是最直观的,但其实不用转变成数组,可以在递归遍历的过程中直接判断是否有序。

这道题目比较容易陷入两个陷阱:

  • 陷阱1

不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了

​ 写出了类似这样的代码(是我没错了):

if (root->val > root->left->val && root->val < root->right->val) {
    return true;
} else {
    return false;
}

​ 因为我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。

例如: [10,5,15,null,null,6,20] 这个case:

二叉搜索树
  • 陷阱2

​ 样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。此时可以初始化比较元素为longlong的最小值。

递归三部曲:

  • 确定递归函数,返回值以及参数
  • 确定终止条件
  • 确定单层递归的逻辑

中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。

class Solution {
public:
    long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;

        bool left = isValidBST(root->left);
        // 中序遍历,验证遍历的元素是不是从小到大
        if (maxVal < root->val) maxVal = root->val;
        else return false;
        bool right = isValidBST(root->right);

        return left && right;
    }
};

如果测试数据中有 longlong的最小值,怎么办?

不可能在初始化一个更小的值了吧。 建议避免 初始化最小值,如下方法取到最左面节点的数值来比较。

代码如下:

class Solution {
public:
    TreeNode* pre = NULL; // 用来记录前一个节点
    bool isValidBST(TreeNode* root) {
        if (root == NULL) return true;
        bool left = isValidBST(root->left);

        if (pre != NULL && pre->val >= root->val) return false;
        pre = root; // 记录前一个节点

        bool right = isValidBST(root->right);
        return left && right;
    }
};

迭代法:

迭代法中序遍历稍加改动就可以了,代码如下:

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        stack<TreeNode*> st;
        TreeNode* cur = root;
        TreeNode* pre = NULL; // 记录前一个节点
        while (cur != NULL || !st.empty()) {
            if (cur != NULL) {
                st.push(cur);
                cur = cur->left;                // 左
            } else {
                cur = st.top();                 // 中
                st.pop();
                if (pre != NULL && cur->val <= pre->val)
                return false;
                pre = cur; //保存前一个访问的结点

                cur = cur->right;               // 右
            }
        }
        return true;
    }
};

总结

  • 搜索二叉树的特性,左 < 中 < 右。
  • 同时遍历两个二叉树,进行操作。

今日份题目都听懂了,重拾信心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值