提示:DDU,供自己复习使用。欢迎大家前来讨论~
二叉树 Part05
构造二叉树类的题目,尝试使用前序遍历(中左右),先构造中间节点,再构造左子树,最后右子树
二、题目
题目一:642.最大二叉树
解题思路:
最大二叉树的构建过程如下:
递归法
递归三部曲:
-
确定递归函数的参数和返回值
//参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。 TreeNode* constructMaximumBinaryTree(vector<int>& nums)
-
确定终止条件
当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。
TreeNode* node = new TreeNode(0); if (nums.size() == 1) { node->val = nums[0]; return node; }
-
确定单层递归的逻辑
这里有三步工作:
-
先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。
int maxValue = 0; int maxValueIndex = 0; for (int i = 0; i < nums.size(); i++) { if (nums[i] > maxValue) { maxValue = nums[i]; maxValueIndex = i; } } TreeNode* node = new TreeNode(0); node->val = maxValue;
-
最大值所在的下标左区间 构造左子树
// 这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。 if (maxValueIndex > 0) { vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex); node->left = constructMaximumBinaryTree(newVec); }
-
最大值所在的下标右区间 构造右子树
// 判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。 if (maxValueIndex < (nums.size() - 1)) { vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end()); node->right = constructMaximumBinaryTree(newVec); }
-
完整代码如下:
==细节:==注意这里的区间是左闭右开的
class Solution {
public:
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
TreeNode* node = new TreeNode(0);
if (nums.size() == 1) {
node->val = nums[0];
return node;
}
// 找到数组中最大的值和对应的下标
int maxValue = 0;
int maxValueIndex = 0;
for (int i = 0; i < nums.size(); i++) {
if (nums[i] > maxValue) {
maxValue = nums[i];
maxValueIndex = i;
}
}
node->val = maxValue;
// 最大值所在的下标左区间 构造左子树 注意这里的区间是左闭右开的
if (maxValueIndex > 0) {
vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
node->left = constructMaximumBinaryTree(newVec);
}
// 最大值所在的下标右区间 构造右子树
if (maxValueIndex < (nums.size() - 1)) {
vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
node->right = constructMaximumBinaryTree(newVec);
}
return node;
}
};
题目二: 617.合并二叉树
[617. 合并二叉树](https://leetcode.cn/problems/path-sum/)
解题思路
- 同时遍历两个二叉树,在第一个二叉树的基础上,进行更新。也可以创建一个新的二叉树,用来存储最后的结果。
- 其实和遍历一个树逻辑是一样的,只不过传入两个树的节点,同时操作。
递归法:
本题的操作流程动画:(这道题目的操作还是很简单的)
- 确定递归函数的参数和返回类型
首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。
-
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
- 确定终止条件
因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。
-
if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2 if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
- 确定单层递归的逻辑
单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。
那么单层递归中,就要把两棵树的元素加到一起。
-
t1->val += t2->val; t1->left = mergeTrees(t1->left, t2->left); t1->right = mergeTrees(t1->right, t2->right); return t1;
完整的代码如下:
这道题的采用前、中、后序都是可以的。
class Solution {
public:
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
// 修改了t1的数值和结构
t1->val += t2->val; // 中
t1->left = mergeTrees(t1->left, t2->left); // 左
t1->right = mergeTrees(t1->right, t2->right); // 右
return t1;
}
};
题目三:700.二叉搜索树中的搜索
解题思路:
二叉搜索树的特性,自带顺序,不需要考虑遍历的顺序了。
二叉搜索树是一个有序树:
- 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
- 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
- 它的左、右子树也分别为二叉搜索树
递归法:
-
确定递归函数的返回值和参数
TreeNode* search(TreeNode* root,int target){};
-
确定终止条件
if(root==NULL || root->val == target) retrurn root;
-
确定单层循环逻辑
//因为有返回值,创建变量来接收一下 TreeNode* result = NULL; if(root->val > target) result = search(toot->left,target); if((root->val < target) result = search(toot->right,target); return root;
完整代码:
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) return root;
TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;
}
};
//或者这样写
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) return root;
if (root->val > val) return searchBST(root->left, val);
if (root->val < val) return searchBST(root->right, val);
return NULL;
}
};
迭代法:
一提到二叉树遍历的迭代法,可能立刻想起使用栈来模拟深度遍历,使用队列来模拟广度遍历。对于二叉搜索树可就不一样了,因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。
例如要搜索元素为3的节点,我们不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。
中间节点如果大于3就向左走,如果小于3就向右走,如图:
接下来可以递归了,代码如下(学到现在,第一次见这么==简单的迭代的代码==):
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
while (root != NULL) {
if (root->val > val) root = root->left;
else if (root->val < val) root = root->right;
else return root;
}
return NULL;
}
};
小结:
本篇我们介绍了二叉搜索树的遍历方式,因为二叉搜索树的有序性,遍历的时候要比普通二叉树简单很多。所以针对二叉搜索树的题目,一样要利用其特性。文中出递归和迭代两种方式,可以看出写法都非常简单,就是利用了二叉搜索树有序的特点
题目四:98.验证二叉搜索树
解题思路:
要知道中序遍历下,输出的二叉搜索树节点的数值是有序序列。
有了这个特性,验证二叉搜索树,就相当于变成了判断一个序列是不是递增的了。
递归法:
可以递归中序遍历将二叉搜索树转变成一个数组,代码如下:
vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
traversal(root->right);
}
然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素。
traversal(root);
for (int i = 1; i < vec.size(); i++) {
// 注意要小于等于,搜索树里不能有相同元素
if (vec[i] <= vec[i - 1]) return false;
}
return true;
整体代码:
class Solution {
private:
vector<int> vec;
void traversal(TreeNode* root) {
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val); // 将二叉搜索树转换为有序数组
traversal(root->right);
}
public:
bool isValidBST(TreeNode* root) {
vec.clear(); // 不加这句在leetcode上也可以过,但最好加上
traversal(root);
for (int i = 1; i < vec.size(); i++) {
// 注意要小于等于,搜索树里不能有相同元素
if (vec[i] <= vec[i - 1]) return false;
}
return true;
}
};
以上代码中,我们把二叉树转变为数组来判断,是最直观的,但其实不用转变成数组,可以在递归遍历的过程中直接判断是否有序。
这道题目比较容易陷入两个陷阱:
- 陷阱1
不能单纯的比较左节点小于中间节点,右节点大于中间节点就完事了。
写出了类似这样的代码(是我没错了):
if (root->val > root->left->val && root->val < root->right->val) {
return true;
} else {
return false;
}
因为我们要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。所以以上代码的判断逻辑是错误的。
例如: [10,5,15,null,null,6,20] 这个case:
- 陷阱2
样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。此时可以初始化比较元素为longlong的最小值。
递归三部曲:
- 确定递归函数,返回值以及参数
- 确定终止条件
- 确定单层递归的逻辑
中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。
class Solution {
public:
long long maxVal = LONG_MIN; // 因为后台测试数据中有int最小值
bool isValidBST(TreeNode* root) {
if (root == NULL) return true;
bool left = isValidBST(root->left);
// 中序遍历,验证遍历的元素是不是从小到大
if (maxVal < root->val) maxVal = root->val;
else return false;
bool right = isValidBST(root->right);
return left && right;
}
};
如果测试数据中有 longlong的最小值,怎么办?
不可能在初始化一个更小的值了吧。 建议避免 初始化最小值,如下方法取到最左面节点的数值来比较。
代码如下:
class Solution {
public:
TreeNode* pre = NULL; // 用来记录前一个节点
bool isValidBST(TreeNode* root) {
if (root == NULL) return true;
bool left = isValidBST(root->left);
if (pre != NULL && pre->val >= root->val) return false;
pre = root; // 记录前一个节点
bool right = isValidBST(root->right);
return left && right;
}
};
迭代法:
迭代法中序遍历稍加改动就可以了,代码如下:
class Solution {
public:
bool isValidBST(TreeNode* root) {
stack<TreeNode*> st;
TreeNode* cur = root;
TreeNode* pre = NULL; // 记录前一个节点
while (cur != NULL || !st.empty()) {
if (cur != NULL) {
st.push(cur);
cur = cur->left; // 左
} else {
cur = st.top(); // 中
st.pop();
if (pre != NULL && cur->val <= pre->val)
return false;
pre = cur; //保存前一个访问的结点
cur = cur->right; // 右
}
}
return true;
}
};
总结
- 搜索二叉树的特性,左 < 中 < 右。
- 同时遍历两个二叉树,进行操作。
今日份题目都听懂了,重拾信心。