以(1.22+((3.43+54.54)*8^3*9)-3*(2+4*2-1))/10+9^3这个表达式为例吧。首先先分析一下这个表达式,有括号,括号的优先级最高,其次有乘幂和乘除,应该是先算乘幂再算乘除,最后是加减。
我们第一步要做的就是处理一下这个表达式,因为表达式是字符串形式的,因此我们要做的处理就是把数字项和运算符项依次放入一个数组中
考虑到数字项有小数的情况,因此在字符转数字的是时候统一利用parseFloat处理。
初始化表达式
function initArr(str,arr) {
let s = ''
for(let i=0;i<str.length;i++){
if(str[i]<10||str[i]=='.') {
s+=str[i]
}else {
if(s!==''){
arr.push(parseFloat(s),str[i])
}else {
arr.push(str[i])
}
s = ''
}
if(i==str.length-1&&s!=='') {
arr.push(parseFloat(s))
}
}
}
处理完之后的结果如下:
处理好表达式之后,重点就来了,表达式中有括号的存在,由于括号的运算优先级最高,因此我们应该首先处理括号中的表达式,如何正确的匹配括号及其中的表达式才是重点,不但如此,还要考虑到括号嵌套括号嵌套括号(…( …()…)…)的情况。如何准确的拿到括号中的表达式,我们可以利用栈的思想去考虑。
我们知道栈的思想是先进后出,因此,我们可以利用一个新数组,通过遍历原数组,将原数组中的每一项push到新数组中,当遍历到 ’ ) ’ 时,就取新数组中最后一个 ’ ( ’ 的索引值,知道了左括号和右括号的索引值(也就是数组最后一项),就可以顺利拿出这个括号里的表达式,然后将这个表达式的处理结果替换到新数组中。
当计算完所有括号里的表达式之后,就可以把整个新数组进行表达式的计算处理了
主函数
function calculate(str){
let arr = [];
initArr(str,arr)
//匹配括号
let tempArr = []
for(let i=0;i<arr.length;i++){
let result = []
tempArr.push(arr[i])
if(arr[i]==')'){
let getLeftIndex = tempArr.lastIndexOf('(')
for(let j=getLeftIndex+1;j<tempArr.length-1;j++){
result.push(tempArr[j])
}
dealResult(result)
tempArr.splice(getLeftIndex,tempArr.length-getLeftIndex,result[0])
}
}
dealResult(tempArr)
console.log(str+' = '+tempArr[0])
}
计算表达式
先乘幂,在乘除,后加减
function dealResult(arr){
var m = Math.pow(10,10)
for(let i=0;i<arr.length;i++){
if(arr[i]=='^') {
let res = arr[i-1]
for(let j=1;j<arr[i+1];j++){
res = parseInt(res*arr[i-1]*m,10)/m
}
arr.splice(i-1,3,res)
i--
}
}
for(let i=0;i<arr.length;i++){
if(arr[i]=='*') {
let res = parseInt(arr[i-1]*arr[i+1]*m,10)/m
arr.splice(i-1,3,res)
i--
}
if(arr[i]=='/') {
let res = parseInt(arr[i-1]/arr[i+1]*m,10)/m
arr.splice(i-1,3,res)
i--
}
}
for(let i=0;i<arr.length;i++){
if(arr[i]=='+') {
let res = parseInt((arr[i-1]+arr[i+1])*m,10)/m
arr.splice(i-1,3,res)
i--
}
if(arr[i]=='-') {
let res = parseInt((arr[i-1]-arr[i+1])*m,10)/m
arr.splice(i-1,3,res)
i--
}
}
}
从控制台的打印输出中可以看出,每一步都是对每一个独立表达式的计算然后得出结果后替换到那个新数组中去。