题目:给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
一、思路
通过遍历题目给定的非空数组,记录首次出现的数,存入一个新建的空列表a内;已出现的数字计入另一个新建的空列表b内(重复的数)。然后遍历题目给定的非空数组是非在b内,不在的就是只出现过一次的数。
时间复杂度:O(n)
空间复杂度:O(n)
题目要求不使用额外的空间来实现,也就是空间复杂度应该是O(1),且具有线性时间复杂度O(n)。我的思路在空间复杂度上不符合要求。
代码:(因为我只想到这种方法,所以还是写出了代码作为参考。)
class Solution:
def singleNumber(self, nums: List[int]) -> int:
a=[]
b=[]
for i in nums:
if i not in a:
a.append(i)
else:b.append(i)
for i in nums:
if i not in b:
return i
二、其他思路
官方提出了一种符合题目要求的思路,使用异或运算。应用于这道题目就是遍历所有数,让每一个元素与全组进行异或运算,结果是1的就是答案。
官方解释:
答案是使用位运算。对于这道题,可使用异或运算⊕。异或运算有以下三个性质。
- 任何数和 0 做异或运算,结果仍然是原来的数,即 a⊕0=a。
- 任何数和其自身做异或运算,结果是 0,即 a⊕a=0。
- 异或运算满足交换律和结合律,即 a⊕b⊕a=b⊕a⊕a=b⊕(a⊕a)=b⊕0=b。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/single-number/solution/zhi-chu-xian-yi-ci-de-shu-zi-by-leetcode-solution/
来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
代码:(根据给出的思路,本人自己写的程序)
class Solution:
def singleNumber(self, nums: List[int]) -> int:
a=0
for i in nums:
a^=i
return a
解释:结合官方给出的第1,2,3点来看就可以明白。
举例:nums=[2,1,2,4,3,9,9]
0⊕2⊕1⊕2⊕4⊕3⊕9⊕9 = 0⊕(2⊕2)⊕1⊕4⊕3⊕(9⊕9) = 0⊕0⊕1⊕4⊕3⊕0 = 1,4,3