如何解决「优质数对」问题:暴力解法与优化思路
在算法问题中,给定两个整数数组 nums1
和 nums2
以及一个正整数 k
,我们经常会遇到类似这样的题目:“计算所有满足条件的数对 (i, j),其中 nums1[i] 可以被 nums2[j] * k 整除。”这类问题考察了我们如何有效地处理数组中的元素,并能够快速判断是否符合给定条件。在本文中,我们将以一个典型的题目为例,分析暴力解法的实现过程,同时探讨如何通过优化来提升算法的效率。
问题描述
给定两个整数数组 nums1
和 nums2
,它们的长度分别为 n
和 m
。同时,给定一个正整数 k
,我们要返回所有满足条件 (i, j)
的优质数对的总数。条件是 nums1[i] % (nums2[j] * k) == 0
,也就是说,nums1[i]
必须能被 nums2[j] * k
整除。
暴力解法
暴力解法是我们解决这类问题时的基本思路,尤其在没有其他优化手段时。通过简单的双重循环遍历数组中的所有可能的数对 (i, j)
,然后检查是否满足给定条件。具体来说,对于每一对 (i, j)
,我们需要检查 nums1[i] % (nums2[j] * k) == 0
是否成立。