计算首次登录第二天再次登录玩家的比率:MySQL 和 Pandas 解法对比
题目描述
在某些游戏中,玩家的登录活动会记录在一个名为 Activity
的表中。每一行记录代表一个玩家在特定日期通过特定设备的登录信息,表结构如下:
Column Name |
Type |
player_id |
int |
device_id |
int |
event_date |
date |
games_played |
int |
其中 (player_id, event_date)
是该表的复合主键,意味着每个玩家在每个日期的记录是唯一的。每一行表示一个玩家在某一天通过某个设备登录并玩了多少游戏,游戏的数量可能为 0。
题目要求计算在首次登录后的第二天再次登录的玩家比率,即在每个玩家首次登录日期之后的第二天,是否有玩家再次登录。我们需要计算这些玩家的数量,并与总玩家数相除,得到一个比例,结果四舍五入保留两位小数。
解题分析
解决此问题的关键在于:
- 找出每个玩家的首次登录日期。
- 确定首次登录后的第二天是否存在登录记录。
- 计算在第二天登录的玩家比例。
具体来说,问题的主要挑战是如何有效地通过数据库查询找出在首次登录后的第二天再次登录的玩家。需要用到日期计算和条件判断来筛选出符合条件的玩家。
解题方法
使用 MySQL 解决方案
首先,我们通过 SQL 查询语言来处理这个问题。我们的目标是计算以下内容:
- 每个玩