1.线性空间
def:设 V 是一个非空的集合,K 是一个数域,在集合 V 中定义两种封闭的代数运算, 一种是加法运算,用 + 来表示,另一种是数乘运算, 用 ∙ 来表示, 并且这两种运算满足下列八条运算律:
(1)加法交换律:α+β= β+α
(2)加法结合律: (α+β)+γ= α+(β+γ)
(3)零元素:在 V 中存在一个元素0,使得对于任意的α∈V 都有
α+0 =α
(4)负元素: 对于V中的任意元素α都存在一个元素 β使得:α+β= 0
(5)数1:对α∈V,有:
1∙α=α
(6)结合律: 对k,l∈K, α∈V 有:
(kl) ∙α= k ∙ (l ∙α)
(7)分配律: 对k,l∈K, α∈V 有:
(k+l) ∙α= k ∙ α+l ∙α
(8)数因子分配律: 对k∈K, α, β∈V 有:
k ∙(α+β)= k ∙ α+k ∙β
称这样的集合 V 为数域 K 上的线性空间。
2.线性空间的基底与维数
3.线性空间的子空间
4.矩阵的值域及核空间
5.子空间的交与和
6.子空间的直和
7.线性变换
8.线性变换的值域和核
9.最小多项式
10.不变子空间
11.欧式空间
11.对称变换
12.索尔引理与正交矩阵