矩阵论复习(加油!读书人)

1.线性空间
def:设 V 是一个非空的集合,K 是一个数域,在集合 V 中定义两种封闭的代数运算, 一种是加法运算,用 + 来表示,另一种是数乘运算, 用 ∙ 来表示, 并且这两种运算满足下列八条运算律:
(1)加法交换律:α+β= β+α
(2)加法结合律: (α+β)+γ= α+(β+γ)
(3)零元素:在 V 中存在一个元素0,使得对于任意的α∈V 都有
α+0 =α
(4)负元素: 对于V中的任意元素α都存在一个元素 β使得:α+β= 0
(5)数1:对α∈V,有:
1∙α=α
(6)结合律: 对k,l∈K, α∈V 有:
(kl) ∙α= k ∙ (l ∙α)
(7)分配律: 对k,l∈K, α∈V 有:
(k+l) ∙α= k ∙ α+l ∙α
(8)数因子分配律: 对k∈K, α, β∈V 有:
k ∙(α+β)= k ∙ α+k ∙β
称这样的集合 V 为数域 K 上的线性空间。

2.线性空间的基底与维数
在这里插入图片描述

3.线性空间的子空间
在这里插入图片描述

4.矩阵的值域及核空间
在这里插入图片描述

5.子空间的交与和
在这里插入图片描述
6.子空间的直和
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
7.线性变换
在这里插入图片描述
8.线性变换的值域和核
在这里插入图片描述
9.最小多项式
在这里插入图片描述
10.不变子空间
在这里插入图片描述
11.欧式空间
在这里插入图片描述
在这里插入图片描述

11.对称变换
在这里插入图片描述
12.索尔引理与正交矩阵
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值