堆的建立和应用

这个就是对堆进行了初始化和大堆小堆的排序
堆的时间复杂度是logN
所以在排序中起到了让大数据排序变快的作用
以下是堆的排序建立
包括堆的初始化
小堆的搭建过程(大堆类似)
堆的数据插入和数据排初

#pragma once
typedef int HPdatatype;
#include<stdio.h>
#include<stdlib.h>
#include<string.h>


//堆的建立  (小堆) 堆就是为了快速的找出来最小值
void Swap(HPdatatype* a, HPdatatype* b)
{
	HPdatatype* tmp;
	tmp = a;
	a = b;
	b = tmp;
}
typedef struct Heap
{
	HPdatatype* _a;
	int _size;//内部数据大小
	int _capacity;//所用空间的大小
}Heap;

//左右子树都是小堆
void adjustdown(HPdatatype* a, int n, int root)
{
	int parent = root;
	int child = parent * 2 + 1;//左孩子
	while (child<n)
	{
		//找出小的孩子
		if (child+1<n&&a[child + 1] < a[child])
			//大堆
			//if (child+1<n&&a[child + 1] > a[child])
		{
			++child;
		}
		//如果父亲大于孩子,要进行交换
		if (a[parent]>a[child])
			//大堆
			//if (a[parent]<a[child])
		{
			Swap(&a[child], &a[parent]);
			//给下一步做准备
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
//向上调整
void adjustup(HPdatatype *a, int n, int child)
{
	int parent = (child - 1) / 2;
	while (child)
	{
		if (a[parent] < a[child])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
//初始化
void heapinit(Heap* php, HPdatatype *a, int n)
{
	php->_a = (HPdatatype*)malloc(sizeof(HPdatatype)*n);
	//php->a[n]={1,2,32,34,35365,67,87686];
	memcpy(php->_a, a, sizeof(HPdatatype)*n);
	php->_size = n;
	php->_capacity = n;

}

//构建堆
void heapsmall(Heap* php, HPdatatype *a, int n)
{
	for (int i = (n - 1 - 1) / 2; i >= 0; --i)
	{
		adjustdown(php->_a, php->_size, i);
	}
}


//排序
void heapnext(Heap* php, HPdatatype *a, int n)
{
	heapsmall(&php, php->_a, n);
	int end = n - 1;
	while (end)
	{
		Swap(&a[end], &a[0]);
		adjustdown(php->_a, php->_size, php->_size-1);
		--end;
	}
}

//删除
void heapdestory(Heap* php)
{
	assert(php);
	free(php->_a);
	php->_capacity = NULL;
	php->_size = NULL;
}
//插入数
void heappush(Heap* php, HPdatatype x)
{
	assert(php);
	int end = php->_size;
	if (php->_size = php->_capacity)
	{
		php->_capacity *= 2;
		HPdatatype* tmp = (HPdatatype*)realloc(php->_a, sizeof(HPdatatype)*php->_capacity);
		php->_size = tmp;
	}
	php->_a[php->_size++] = x;

	adjustup(php->_a, php->_size, php->_size - 1);
}
//删除数
void Heappop(Heap *php)
{
	assert(php);
	swap(&php->_a[0], &php->_a[php->_size]);
	php->_size--;
	adjustdown(php->_a, php->_size, 0);
}

int main()
{
	Heap php;
	heapinit(&php, (&php)->_a, 8);


	//可在这里加入上面的对堆进行的处理
	system("pause");
	return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELMSSA-ELM的具体实现代码,并通过波士顿房价数据集其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例性能对比图表,帮助读者更好地理解复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值