项目背景
在市政服务数字化转型过程中,文档和图片处理的需求日益增多且更加复杂。传统的人工整理和分类方式不仅效率低下,还容易产生错误,无法满足现代市政管理对高效性、准确性和安全性的要求。尤其在审批、备案、监测等工作中,海量文件和图片的管理成为亟待解决的痛点。
基于此,通过自主研发的AI大模型,致力于为市政部门提供一套智能化的文档和图片整理分类解决方案。该方案利用光学字符识别(OCR)、图像识别、自然语言处理(NLP)和深度学习等前沿技术,实现对政务文档和图片的自动解析、分类、比对和归档,帮助市政部门全面提升工作效率和服务水平。
应用场景
1. 审批文件自动分类与归档
场景描述:市政部门日常处理的大量审批文件,如建设规划、环保评估等,类型多样,格式不一。人工分类不仅耗时,且容易因分类错误导致审批延误。
解决方案:
通过OCR技术对历史审批档案文件中的文本内容进行高精度识别,包括手写批注和加盖印章的部分。
利用深度学习模型,根据文件的内容、布局和格式自动归类到相应的审批事项。
支持自动归档,形成可检索的电子档案库,便于后续调阅和管理。
效益:分类准确率提升90%以上,归档效率提升80%。
2. 施工现场图片智能分类与标注
场景描述:市政部门需要对施工现场的照片进行管理,以监测工程进度、监督安全措施落实。传统方式下,海量图片的人工整理和标注费时费力,且分类标准不统一。
解决方案:
利用图像识别技术自动识别图片中的关键元素,如设备、人员、施工状态等。
根据图片内容和时间信息,自动分类至对应的项目和阶段,并生成标签(如“安全帽检测”“钢筋安装”)。
提供智能检索功能,通过输入关键字快速查找对应图片。
效益:分类和标注效率提升70%,检索时间缩短至秒级。
3. 低质量文档的优化与数据提取
场景描述:市政部门在日常工作中常遇到低质量的扫描文件,包含模糊、倾斜的文字或印章覆盖的部分,导致数据提取困难。
解决方案:
通过几何校正、去噪和对比度增强等预处理技术,对低质量文档进行优化。
结合OCR和目标检测技术,精准识别并重建被印章覆盖的文本。
自动提取文档中的关键数据字段,并结构化存储(如JSON、XML格式),方便后续分析和应用。
效益:数据提取准确率提升至95%,人工干预减少50%。
4. 综合台账管理与多维数据分析
场景描述:市政部门需要定期对不同来源的数据(如审批文件、施工现场记录、监测报告等)进行汇总和分析,为决策提供支持。
解决方案:
系统支持多源数据自动汇集,形成完整的台账数据库。
通过NLP技术,挖掘文本和图片中的隐含信息,生成多维度分析报告。
提供可视化工具,实时展示关键数据指标和趋势,辅助领导层做出科学决策。
效益:数据分析效率提升60%,决策支持更具前瞻性和科学性。
项目效益
1.提升工作效率
自动化处理大幅缩短文件和图片整理时间,减少人工操作,提高审批和管理效率。
2.降低人工成本
通过智能技术减少重复性劳动,降低人力资源投入,同时降低因人为错误带来的隐性成本。
3.提高数据安全性
采用本地化部署,配合高标准信息安全保障措施,有效保护市政数据隐私。
4.推动智慧市政建设
以AI技术为驱动,助力市政部门实现从“数字化”到“智能化”的转型,为公众提供更高效、透明的政务服务。