这题可以可以看做完全背包问题来接。因为:1、每种矩形布可以剪任意多个;2、题目给出的矩形布可以看做背包容量;3、每个矩形布都有一个价值
关键在于找到状态转移方程:设dp[i][j]为长为i宽为j的矩形布的最大价值,下面的图一可以看做待剪的布,图二为小布的尺寸
对于这个问题可以两种如下剪布方案:
易知剪布后的价值为每个图形中三块之和。
所以,对于方法一可得dp[i][j]=max(dp[i][j],max((dp[i-x][j]+dp[x][j-y]),(dp[i][j-y]+dp[i-][y]))+value)。
对于方法二可得dp[i][j]=max(dp[i][j],max((dp[i-y][j]+dp[y][j-x]),(dp[i][j-x]+dp[i-y][x]))+value)。
其中,value为小布的价值。
AC代码:
#include<iostream>
using namespace std;
struct node
{
int x,y,value;
}p[10];
int dp[1005][1005];
int max(int a,int b)
{
return a>=b?a:b;
}
int main()
{
int n,x,y,t_case,i,j,k;
cin>>t_case;
while(t_case--)
{
cin>>n>>x>>y;
for(i=0;i<n;i++)
{
cin>>p[i].x>>p[i].y>>p[i].value;
}
memset(dp,0,sizeof(dp));
for(i=0;i<=x;i++)
{
for(j=0;j<=y;j++)
{
for(k=0;k<n;k++)
{
if(i>=p[k].x && j>=p[k].y)
dp[i][j]=max(dp[i][j],max((dp[i-p[k].x][j]+dp[p[k].x][j-p[k].y]),(dp[i][j-p[k].y]+dp[i-p[k].x][p[k].y]))+p[k].value);
if(i>=p[k].y && j>=p[k].x)
dp[i][j]=max(dp[i][j],max((dp[i-p[k].y][j]+dp[p[k].y][j-p[k].x]),(dp[i][j-p[k].x]+dp[i-p[k].y][p[k].x]))+p[k].value);
}
}
}
cout<<dp[x][y]<<endl;
}
return 0;
}