HDU3127 完全背包 枚举所有小矩形

这题可以可以看做完全背包问题来接。因为:1、每种矩形布可以剪任意多个;2、题目给出的矩形布可以看做背包容量;3、每个矩形布都有一个价值

关键在于找到状态转移方程:设dp[i][j]为长为i宽为j的矩形布的最大价值,下面的图一可以看做待剪的布,图二为小布的尺寸

对于这个问题可以两种如下剪布方案:

 

易知剪布后的价值为每个图形中三块之和。

所以,对于方法一可得dp[i][j]=max(dp[i][j],max((dp[i-x][j]+dp[x][j-y]),(dp[i][j-y]+dp[i-][y]))+value)。

对于方法二可得dp[i][j]=max(dp[i][j],max((dp[i-y][j]+dp[y][j-x]),(dp[i][j-x]+dp[i-y][x]))+value)。

其中,value为小布的价值。

 

AC代码:

#include<iostream>
using namespace std;

struct node
{
	int x,y,value;
}p[10];

int dp[1005][1005];

int max(int a,int b)
{
	return a>=b?a:b;
}

int main()
{
	int n,x,y,t_case,i,j,k;

	cin>>t_case;
	while(t_case--)
	{
		cin>>n>>x>>y;

		for(i=0;i<n;i++)
		{
			cin>>p[i].x>>p[i].y>>p[i].value;
		}

		memset(dp,0,sizeof(dp));
		for(i=0;i<=x;i++)
		{
			for(j=0;j<=y;j++)
			{
				for(k=0;k<n;k++)
				{
					if(i>=p[k].x && j>=p[k].y)
						dp[i][j]=max(dp[i][j],max((dp[i-p[k].x][j]+dp[p[k].x][j-p[k].y]),(dp[i][j-p[k].y]+dp[i-p[k].x][p[k].y]))+p[k].value);
					if(i>=p[k].y && j>=p[k].x)
						dp[i][j]=max(dp[i][j],max((dp[i-p[k].y][j]+dp[p[k].y][j-p[k].x]),(dp[i][j-p[k].x]+dp[i-p[k].y][p[k].x]))+p[k].value);
				}
			}
		}
		cout<<dp[x][y]<<endl;

	}
	return 0;
}


 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值