【数据结构】树和二叉树

树和二叉树

树:是由n个结点构成的有限集合T。若n=0称为空树
在这里插入图片描述

基本术语

结点:数据元素+若干指向子树的分支
结点的度:分支的个数
树的度:树中所有结点的度的最大值
叶子结点:度为零的结点
分支结点:度大于零的结点
路径:从根到该结点所经分支和结点构成
孩子结点、双亲结点、兄弟结点、祖先结点、子孙结点
有序树:把子结点按从左到右的次序顺序编号,结点的位置固定,不能互换,即使其他结点删除,它的编号也不变

二叉树

定义

二叉树是n个结点的有限集合,该集合为空,或者由一个根结点及两棵互不相交的左、右子树构成,而且其左右子树均为二叉树。

度为2的有序树不是二叉树

满二叉树:如果一棵二叉树中任意一层的结点个数都到达了最大值,则此二叉树称为满二叉树。一棵高度为k的满二叉树具有2^k-1个结点
完全二叉树:对于深度为k,有n个结点的完全二叉树,其中每个结点都与深度为k的满二叉树中编号从1到n的绩点一一对应。
特征:
- 叶子结点只能出现在最后一层和倒数第二层
- 任一结点,如果它左分支子孙的最大层次为l,那么它右分支的最大层次为l或l-1。
在这里插入图片描述

性质

  1. 一棵非空二叉树的第i层上最多有2^(i-1)个结点(i>=1)
  2. 一棵高度为k的二叉树,最多有2^k - 1个结点
  3. 任何一棵二叉树中,若叶子数为n0,度为2的结点数为n2,则n0=n2 + 1
  4. 具有n个结点的完全二叉树的高度k = log2(n+1)向上取整

二叉树的存储结构

1 顺序存储

#defnie MAX_TREE_SIZE 100
typedef TElemTypt SqBiTree[MAX_TREE_SIZW];
SqBiree bt;
//将二叉树按有序树编号,将结点存储到对应编号的位置
  1. 链式存储
  • 二叉链表
typedef struct BiTNode{
	TElemType data;//结点存储的值
	struct BiTNode *lchild,*rchlid;//结点的左右孩子指针
}BiTNode,*BiTree;
- 三叉链表
typedef struct BiTNode 
{
	struct TElemType data;
	struct BiTNode* lchild, * rchild, * parent;
}TriTNode,*TriTree;
- 双亲链表
typedef struct BPTNode{
	TElemType data;
	int *parent;
	char LRTag;
}BPTNode;
typedef struct BPTree{
	BPTNode nodes[MAX_TREE_SIZE];
	int num_node; //结点数目
	int root; //根结点的位置
}BPTree;

二叉树的遍历和建立

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
//二叉树的存储结构,一个数据域,2个指针域
typedef char ElemType;

typedef struct BiTNode
{
    char data;
    struct BiTNode* lchild, * rchild;
}BiTNode, * BiTree;

//二叉树的前序遍历方式创建
void PreCreateBiTree(BiTree& T)
{
    ElemType ch;
    cin >> ch;
    if (ch == '#')
        T = NULL;
    else
    {
        T = new BiTNode;
        if (!T)
            exit(-1);
        T->data = ch;
        PreCreateBiTree(T->lchild);
        PreCreateBiTree(T->rchild);
    }
}

BiTree CreateBTree(ElemType a[], ElemType b[], int n) //对应例2.8的算法
//由先序序列a[0..n-1]和中序序列b[0..n-1]建立二叉链
{
    int k;
    if (n <= 0) return NULL;
    ElemType root = a[0];   //根结点值
    BiTree bt = (BiTNode*)malloc(sizeof(BiTNode));
    bt->data = root;
    for (k = 0; k < n; k++)   //在b中查找b[k]=root的根结点
        if (b[k] == root)
            break;
    bt->lchild = CreateBTree(a + 1, b, k);   //递归创建左子树
    bt->rchild = CreateBTree(a + k + 1, b + k + 1, n - k - 1); //递归创建右子树
    return bt;
}
void PreOrderTraverse(BiTree T)//二叉树的先序遍历
{
    if (T == NULL)
        return;
    cout << T->data << "\t";
    PreOrderTraverse(T->lchild);
    PreOrderTraverse(T->rchild);
}
void InOrderTraverse(BiTree T)//二叉树的中序遍历
{
    if (T == NULL)
        return;
    InOrderTraverse(T->lchild);
    cout << T->data << "\t";
    InOrderTraverse(T->rchild);
}
void PostOrderTraverse(BiTree T)//后序遍历
{
    if (T == NULL)
        return;
    PostOrderTraverse(T->lchild);
    PostOrderTraverse(T->rchild);
    cout << T->data << "\t";
}

int main() {
    BiTree bt;
    PreCreateBiTree(bt);
    PreOrderTraverse(bt);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值