logger.debug的用处

简单的说,就是配合log的等级过滤输出

根据你log4j的配置等级,logger记录日志分别对相应等级的内容进行输出,当然很有可能你的不同等级的日志记录地点或方式是不是一样的。
比如,你在开发的时候,要验证一个方法有没有被调用到,为了方便调试,通常会在这个方法开始的时候加一些system.out。
但是项目真正发布的时候这些代码通常是要移除掉的,所以通常更建议用logger来记录
所以你可能会加logger.debug。 

为什么是debug而不是info error或者其他呢?
因为通常项目发布的时候都会把日志等级设置为error 或者info之类的等级,
在这两个等级下debug的内容是输出不了的,所以就可以做到不需要修改代码就不会输出你只有在调试的时候才需要输出的内容
各个等级都是有它的含义的,虽然在代码写的时候你用debug info error都是可以,
但是为了方便管理,只有调试的时候才用到日志会用debug,一些信息类的日志记录通常会用info(比如你想看一天有几个用户登录),
一些错误的,或者异常信息会用error,比如某个时刻数据库连接出了问题,如果分析日志,直接搜索error开头的就能直接定位到了

原文链接:https://www.cnblogs.com/xiangkejin/p/6426761.html


<think>好的,我现在要帮用户逐行解释这段Python代码。首先,用户是新手,所以我需要尽量用简单易懂的语言,避免使用太多专业术语。同时,用户提到要关注核心算法逻辑、语法结构、函数用途、错误排查和优化建议,还要检查是否有调用其他代码的部分,以及需要掌握的知识点。 首先看代码的结构: if batch_idx % self.log_step == 0: self.logger.debug('Train Epoch: {} {} Loss: {:.6f} '.format( epoch, self._progress(batch_idx), loss.item(), )) 第一行是条件判断,检查batch_idx是否能被self.log_step整除。这里可能涉及到取模运算,需要解释%的作用,以及这个条件的目的,比如每隔一定的批次记录日志。 第二行是调用loggerdebug方法,输出训练信息。需要解释logger的作用,format方法的用法,以及各个参数的含义,比如epoch、_progress方法、loss.item()的作用。 接下来要检查是否有调用其他部分的代码。这里看到self._progress(batch_idx),显然调用了类中的_progress方法。需要说明这个方法可能的作用,比如返回当前训练的进度信息,但具体实现需要查看类中的定义。用户可能需要知道这部分代码被调用了,但如果没有提供_progress的代码,无法深入分析,只能推测其功能。 然后,loss.item()是将张量转换为Python数值,这里要解释为什么需要这样做,可能因为PyTorch中loss是张量,而日志需要普通数值。 潜在错误可能包括:self.log_step未初始化,导致取模出错;或者_progress方法不存在,导致AttributeError。需要提醒用户检查这些变量是否正确定义。 代码优化方面,可以考虑使用f-string代替format,使代码更简洁。但也要注意Python版本是否支持。另外,日志信息是否需要更详细,比如加入时间戳或其他指标。 作为新手需要掌握的知识点包括:条件语句、取模运算、字符串格式化、类方法和属性的调用、日志模块的使用、张量与数值转换。这些都需要逐一解释清楚,确保用户理解每个部分的作用和用法。 总结下来,我需要分步骤解释每一行代码,指出调用的方法,可能的错误点,优化建议,以及用户需要学习的基础知识点。保持语言简单明了,避免过于技术化,帮助用户逐步理解代码结构和功能。</think>我将以新手能理解的方式,逐行解释代码并分析核心知识点: 1. `if batch_idx % self.log_step == 0:` - **基础功能**:检查当前批次序号是否是日志记录步数的整数倍 - **核心算法**:取模运算`%`用于周期性触发日志记录 - **语法结构**: - `batch_idx`:当前训练批次序号(从0开始计数) - `self.log_step`:类属性,定义日志记录频率(如每10个批次记录一次) - `%`:取余运算符,当余数为0时条件成立 - **潜在错误**:如果`self.log_step`未初始化或为0会引发错误 - **优化建议**:可添加`and self.log_step > 0`条件避免除以零错误 2. `self.logger.debug('Train Epoch: {} {} Loss: {:.6f} '.format(...))` - **基础功能**:使用DEBUG级别记录训练日志 - **核心组件**: - `self.logger`:日志记录器对象(通常来自logging模块) - `.format()`:字符串格式化方法,`{}`为占位符 - **参数解析**: - `epoch`:当前训练轮次 - `self._progress(batch_idx)`:调用了类的私有方法(具体实现需查看类定义) - `loss.item()`:将PyTorch张量转换为Python浮点数 - **调用关系**:调用了`self._progress()`方法,具体实现需要查看类中的定义 - **潜在错误**:如果`_progress`方法未定义会抛出AttributeError 需要掌握的知识点清单: 1. **条件语句**:`if`条件判断结构 2. **取模运算符**:`%`的运算规则和应用场景 3. **字符串格式化**:`.format()`方法的使用 4. **面向对象编程**:`self`关键字访问类属性和方法 5. **日志模块**:logging模块的基本使用 6. **PyTorch基础**:`.item()`方法的作用(将单值张量转为Python数值) 7. **私有方法**:`_progress()`的下划线命名约定(约定为类内部使用) 代码优化建议: ```python # 使用f-string(Python 3.6+)更简洁 self.logger.debug(f'Train Epoch: {epoch} {self._progress(batch_idx)} Loss: {loss.item():.6f}') # 添加安全判断 if self.log_step > 0 and batch_idx % self.log_step == 0: ``` 常见错误排查: 1. `AttributeError: 'XXX' object has no attribute '_progress'` - 检查类中是否正确定义了`def _progress(self, batch_idx)`方法 2. `ZeroDivisionError: integer division or modulo by zero` - 确保`self.log_step`在初始化时被赋予大于0的值 3. 日志无输出 - 检查logger的日志级别设置(debug级别可能需要特别配置) - 确认是否初始化了logger对象 该代码段在机器学习训练循环中典型作用:周期性输出训练状态,帮助开发者监控训练过程,及时发现问题。实际项目中,`_progress()`方法通常用于计算/返回训练进度信息(如百分比进度、已处理样本数等)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值