题目描述如下:
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
public class Problem37
{
public static void main(String[] args)
{
int sum = 0;
for (int i = 10; i < 1000000; i++)
{
if (!contain24680(i) && isTruncatable(i))
{
System.out.print(i + "\t");
sum += i;
}
}
System.err.println("\nsum = " + sum);
}
/**
* 保证传入的为质数
*
* @param num
* @return
*/
public static boolean isTruncatable(int num)
{
int temp = num;
while (temp > 0)
{
if (!MathUtils.isPrime(temp))
{
return false;
}
int length = MathUtils.getLength(temp);
temp = temp % (int) Math.pow(10, length - 1);
}
temp = num;
while (temp > 0)
{
if (!MathUtils.isPrime(temp))
{
return false;
}
temp = temp / 10;
}
return true;
}
public static boolean contain24680(int num)
{
String temp = String.valueOf(num);
if (temp.contains("0") || temp.contains("4")
|| temp.contains("6") || temp.contains("8"))
{
return true;
}
return false;
}
}
result:
23 37 53 73 313 317 373 797 3137 3797 739397
sum = 748317