POJ2479 Maximum sum DP

本文介绍了一种改进的连续子串和算法,通过顺序和逆序求解避免重复计算,有效提升时间效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大连续字串和的加强版。


1 -1 2 2 3 -3 4 -4 5 -5
Hit:In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.


即求两段不重叠连续字串的最大和

第一反应是枚举每个点作为断点,两段分别求最大连续子串和,取最大值

#include <stdio.h>
#define N 50005
int a[N],dp[N];

int main()
{
	int t, n, max1, max2, max3;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i=1; i<=n; i++)
			scanf("%d",&a[i]);

		max3 = -1000000000;
		dp[1] = max1 = a[1];
		for(int k=2; k<=n; k++)
		{
			dp[k] = max2 =a[k];
			for(int i=k+1; i<=n; i++)
			{
				if(dp[i-1]>0)
					dp[i] = dp[i-1] + a[i];
				else
					dp[i] = a[i];
				max2 = max2 < dp[i] ? dp[i] : max2;
			}
			if(max3<max1 + max2)
				max3 = max1 + max2;
			if(dp[k-1]<0)
				dp[k] = a[k];
			else
				dp[k] = a[k] + dp[k-1];
			if(max1 < dp[k])
				max1 = dp[k];
		}
		printf("%d\n",max3);
	}
	return 0;
}

于是怒TLE了。。。

原因是以每点为断点是该点后的连续子串和都重新求一遍,时间复杂度为O(n2)


聪明的做法是,顺序、逆序各求一次最大连续子串和,这样可避免重复计算,时间复杂度为O(n)

#include <stdio.h>
#define N 50005
int a[N],dp[N],rdp[N];
int left[N],right[N];

int main()
{
	int t, n;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i=1; i<=n; i++)
			scanf("%d",&a[i]);
		
		//顺序
		dp[1] = a[1];
		for(int i=1; i<=n; i++)
			dp[i] = dp[i-1]>0 ? dp[i-1]+a[i] : a[i];
		
		//test=====================================
		//for(int i=1; i<=n; i++)
		//	printf("%d ",dp[i]);
		//printf("\n");
		//test=====================================

		//逆序
		rdp[n] = a[n];
		for(int i=n-1; i>=1; i--)
			rdp[i] = rdp[i+1]>0 ? rdp[i+1]+a[i] : a[i];

		//test=====================================
		//for(int i=1; i<=n; i++)
		//	printf("%d ",rdp[i]);
		//printf("\n");
		//test=====================================

		//左起前i个元素的连续子序列最大和
		left[1] = dp[1];
		for(int i=2; i<=n; i++)
			left[i] = dp[i]>left[i] ? dp[i] : left[i-1];

		//test=====================================
		//for(int i=1; i<=n; i++)
		//	printf("%d ",left[i]);
		//printf("\n");
		//test=====================================

		//右起
		right[n] = rdp[n];
		for(int i=n-1; i>=1; i--)
			right[i] = rdp[i]>right[i+1] ? rdp[i] : right[i+1];
	
		//test=====================================
		//for(int i=1; i<=n; i++)
		//	printf("%d ",right[i]);
		//printf("\n");
		//test=====================================

		int ans = -100000000;
		for(int i=1; i<n; i++)
			ans = left[i]+right[i+1]>ans ? left[i]+right[i+1] : ans;
		printf("%d\n",ans);
	}
	return 0;
}


<think>好的,我现在需要帮助用户找到关于POJ最大和问题的题目或解法。用户提到的是“maximum sum problem”,根据提供的引用,引用[1]里提到了POJ 1481 Maximum sum,动态规划解法。所以首先确定题目编号是1481。 接下来,用户需要解法或问题。根据引用内容,问题描述是给定一组整数,找出两个不重叠的子数组,使得它们的和最大。动态规划的方法被提到,所以需要解释如何用动态规划解决这个问题。 首先,我需要确认问题的大意:找到两个不相交的子数组,使得它们的和最大。这需要分解问题,可能分为两个步骤:先找到从左到右的最大子数组,再找到从右到左的最大子数组,或者类似的方法。 然后,动态规划的思路通常是记录当前最大和,或者前向和后向的最大值。例如,维护两个数组left和right,left[i]表示从0到i的最大子数组和,right[j]表示从j到n-1的最大子数组和。然后遍历所有可能的分割点,计算left[i] + right[i+1]的最大值。 需要确保这两个子数组不重叠,所以分割点必须满足第一个子数组结束在i,第二个开始于i+1之后。因此,可能需要两次遍历,一次从左到右,一次从右到左,存储每个位置的最大值。 然后,编写代码示例,可能使用Python。例如,先计算left数组,再计算right数组,然后遍历所有可能的分割点,找到最大的组合。需要注意数组的索引范围,避免越界。 此外,引用中提到的其他POJ题目资源,如引用[2]和[3]提供了刷题顺序,可能用户对题目难度和顺序也有兴趣,所以可以推荐这些资源,帮助用户按难度练习。 最后,生成相关问题,可能涉及动态规划的其他应用,类似的最大和问题变种,或者POJ题目的推荐顺序。确保问题与用户的需求相关,帮助他们深入理解题目和解法。</think>关于POJ 1481 Maximum sum问题的解法和题目描述如下: ### POJ 1481 Maximum sum问题描述 给定$n$个整数的集合$A=\{a_1, a_2,...,a_n\}$,定义函数$d(A)$为满足以下条件的最大和: $$ d(A) = \max\left\{ \sum_{i=s_1}^{t_1} a_i + \sum_{j=s_2}^{t_2} a_j \ \big| \ 1 \leq s_1 \leq t_1 < s_2 \leq t_2 \leq n \right\} $$ 即寻找两个**不重叠**的子数组,使得它们的和最大[^1]。 --- ### 动态规划解法 #### 核心思路 1. **预处理左右区间最大子段和**: - 用$left[i]$表示从$a_1$到$a_i$区间内的最大子段和 - 用$right[j]$表示从$a_j$到$a_n$区间内的最大子段和 2. **遍历分割点**: 对于每个分割点$k$($1 \leq k < n$),计算$left[k] + right[k+1]$的最大值 #### 算法步骤 1. 正向遍历数组,计算$left$数组(类似最大子段和) 2. 反向遍历数组,计算$right$数组 3. 遍历所有可能的分割点,求最大和 --- ### Python代码实现 ```python def max_sum(arr): n = len(arr) # 计算左半部分最大子段和 left = [0] * n current = left[0] = arr[0] for i in range(1, n): current = max(arr[i], current + arr[i]) left[i] = max(left[i-1], current) # 计算右半部分最大子段和 right = [0] * n current = right[-1] = arr[-1] for i in range(n-2, -1, -1): current = max(arr[i], current + arr[i]) right[i] = max(right[i+1], current) # 寻找最大组合 max_val = -float('inf') for k in range(n-1): max_val = max(max_val, left[k] + right[k+1]) return max_val ``` --- ### POJ题目资源推荐 1. **题目难度列表**:引用[2]提供了POJ从易到难的刷题顺序,适合循序渐进练习 2. **同类问题扩展**:可尝试POJ 2479Maximum sum进阶版)、POJ 2593(双字段最大和变种) 3. **训练路径**:参考引用[3]的刷题顺序规划,建议先掌握基础动态规划再挑战本题 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值