这个就是文章的一个整体的框架模型,总体上看还是比较简单的,比较有意思的是这篇文章的结构跟之前阅读的一篇关于PPI位点预测是比较相似的,新颖的地方在于它利用alphaflod得到蛋白质残基的三维坐标,并且计算两个残疾之间的欧氏距离,设置阈值,得到一个0,1矩阵作为图卷积网络的邻接矩阵,然后根据JET2得到Pssm,Dssp,CV等蛋白质残基的相关特征矩阵进行拼接,作为图卷积网络的特征输入,最后使用MLP对PPI进行的一个预测
SGPPI文献阅读:alphaflod+GCN

这个就是文章的一个整体的框架模型,总体上看还是比较简单的,比较有意思的是这篇文章的结构跟之前阅读的一篇关于PPI位点预测是比较相似的,新颖的地方在于它利用alphaflod得到蛋白质残基的三维坐标,并且计算两个残疾之间的欧氏距离,设置阈值,得到一个0,1矩阵作为图卷积网络的邻接矩阵,然后根据JET2得到Pssm,Dssp,CV等蛋白质残基的相关特征矩阵进行拼接,作为图卷积网络的特征输入,最后使用MLP对PPI进行的一个预测