SGPPI文献阅读:alphaflod+GCN

该文章采用AlphaFold获取蛋白质残基的三维信息,通过计算残基间的欧氏距离构建邻接矩阵,结合Pssm、Dssp和CV等特征,输入图卷积网络进行处理,最终用MLP预测蛋白质相互作用。
摘要由CSDN通过智能技术生成

这个就是文章的一个整体的框架模型,总体上看还是比较简单的,比较有意思的是这篇文章的结构跟之前阅读的一篇关于PPI位点预测是比较相似的,新颖的地方在于它利用alphaflod得到蛋白质残基的三维坐标,并且计算两个残疾之间的欧氏距离,设置阈值,得到一个0,1矩阵作为图卷积网络的邻接矩阵,然后根据JET2得到Pssm,Dssp,CV等蛋白质残基的相关特征矩阵进行拼接,作为图卷积网络的特征输入,最后使用MLP对PPI进行的一个预测 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值