LeetCode42-接雨水-图解-四种解法-DP/双指针/单调栈/暴力-Java

1 题目

题目链接:

https://leetcode-cn.com/problems/trapping-rain-water/ 

接雨水问题在leetcode中是“困难”,但同时也是面试中常遇到的问题。

1.1 题目描述:

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 

示例:

输入: [0,1,0,2,1,0,1,3,2,1,2,1]
输出: 6

1.2 题目分析:

        这道题很想我们常说的“木桶效应”,说白了就是一个柱子能接多少水,取决于它两边“较短的板”,另外一个前提条件就是,两边的柱子高度都要比所要装水的柱子的高度要高,否则肯定是无法装水的。

        有了这个认识之后,再取解这道题目就不难了。

        如图,我们要计算柱子i的接水容量的时候,能否接水取决于两边最高(left_max, right_max)的高度,但是接水的上限则取决于left_max和right_max中较小的一方(即上边所说的“短板”)。

 

2 题解

前三种解法都是(如上图)纵向考虑每个柱子能装多少水。

第4种解法从横向考虑问题,具体解释见下文。

2.1 暴力

暴力解法比较好理解,但是时间复杂度O(n^2).

    // 42. 接雨水
    // 暴力
    public int trap(int[] height) {
        int len = height.length;
        if(len<=1) return 0;
        int res = 0;
        for (int i = 0; i < len; i++) {
            int l_max = height[0], r_max = height[len-1];
            for (int j = 0; j <= i; j++) {
                l_max = Math.max(l_max,height[j]);
            }
            for(int j=i; j<len;j++){
                r_max = Math.max(r_max,height[j]);
            }
            // System.out.println(l_max+" "+r_max);
            res += (Math.min(l_max,r_max)-height[i]);
        }
        return res;
    }

2.2 动态规划

        动态规划,可理解为“用空间换时间”,也就是说,空间复杂度增大,但是时间复杂度降低。(另外避免一些重复计算)

        上文暴力解法,在内层for去寻找左右max的时候,其实是有重复计算的,而利用额外的空间去存储前一个状态的左右max则可以避免这些重复计算。

        即:创建两个数组(l_max,r_max)去存储,l_max[i]和r_max[i]在index=i的时候,其左右各自最高的高度。

        这种解法,时间空间复杂度都是O(N).

    public int trap(int[] height) {
        int len = height.length;
        if(len<=1) return 0;
        int res = 0;
        int[] l_max = new int[len];
        int[] r_max = new int[len];
        l_max[0] = height[0];
        r_max[len-1] = height[len-1];
        for (int i = 1; i < len; i++) {
            l_max[i] = Math.max(height[i],l_max[i-1]);
        }
        for(int i = len-2; i>=0;i--){
            r_max[i] = Math.max(height[i],r_max[i+1]);
        }
        for (int i = 0; i < len; i++) {
            res += Math.min(l_max[i],r_max[i])-height[i];
        }
        return res;
    }

2.3 双指针(前后指针)

双指针和前边两种方法类似,但是又有一些细微的区别,看下图:

参考: https://www.cnblogs.com/labuladong/p/12320514.html 

        如计算index=left处的接水容量,双指针法只在意l_max是(l_max,r_max)二者中较小的一方,但是并不关系,r_max是不是left右边最高的(r_max只是right右侧最高的。)

        时间复杂度O(N),空间复杂度O(1).

    // 双指针(左右指针)
    public int trap3(int[] height) {
        int len = height.length;
        if(len<=1) return 0;
        int res = 0;
        int l_max = height[0], r_max = height[len-1];
        int left = 0, right = len-1;
        while (left<right){
            l_max = Math.max(height[left],l_max);
            r_max = Math.max(height[right],r_max);
            if(l_max<r_max){
                res += Math.min(l_max,r_max)-height[left];
                left++;
            } else{
                res += Math.min(l_max,r_max)-height[right];
                right--;
            }
        }
        return res;
    }

2.4 单调栈

单调栈的思路跟上述三种方法则完全不同,它从横向去考虑问题,如图:

        类似于leetcode84-柱状图中的最大矩形,不过这里使用单调(递减)栈,即:height[i]比stack的height[peek]小的时候才入栈,否则出栈,出栈则计算接水量。

        同样类似“最大矩形问题”,两边加入两个哨兵(两个0)

        详细图解:

        这里用单调递减栈,与单调第增栈,有所不同的是,有元素出栈后,stack可能为空,则无法取栈顶元素peek,这里需要“仍把它pop,但是不计算面积”,因为新的元素比pop的元素大,所以小的元素就没有用了,(从坐标系来看)我们只关心左边最高的柱子,而且,如果不pop它,加入新元素后,栈内顺序就不是递减了。

        入栈、出栈的栈图可以自己动手画一下,更有助于理解,这里只讲一下流程,栈图省略。

代码:

    // 单调“递减”栈
    public int trap4(int[] height) {
        int len = height.length;
        if(len<=1) return 0;
        int res = 0;
        Deque<Integer> stack = new ArrayDeque<>();
        int[] new_height = new int[len+2];
        System.arraycopy(height,0,new_height,1,len);
        for (int i = 0; i < len+2; i++) {
            while(!stack.isEmpty() && new_height[i]>new_height[stack.peek()]){
                int cur = stack.pop();
                if(stack.isEmpty())
                    break;
                int pk = stack.peek();
                int area = (i - pk - 1) * (Math.min(new_height[pk], new_height[i]) - new_height[cur]);
                res += area;
                // System.out.println(pk);
            }
            stack.push(i);
        }
        return res;
    }

单调栈解法的时间复杂度O(N),空间复杂度也是O(N). 其实看起来单调栈方法还没有“动态规划”和“双指针”优越,这里主要是用于方法学习。

 

以上是我的个人理解,如有错误,欢迎批评指正!谢谢!

 

 
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链:https://leetcode-cn.com/tag/dynamic-programming/ 这个链LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值