【Leetcode】712. Minimum ASCII Delete Sum for Two Strings

Description

Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.

Example 1:
Input: s1 = "sea", s2 = "eat"
Output: 231
Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
Deleting "t" from "eat" adds 116 to the sum.
At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.
Example 2:
Input: s1 = "delete", s2 = "leet"
Output: 403
Explanation: Deleting "dee" from "delete" to turn the string into "let",
adds 100[d]+101[e]+101[e] to the sum.  Deleting "e" from "leet" adds 101[e] to the sum.
At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.
Note:
  • 0 < s1.length, s2.length <= 1000.
  • All elements of each string will have an ASCII value in [97, 122].

Discuss

这是一道动态规划的题目.我原本的思路是找出最长公共子序列,然后求出一个字符值之和最大的序列,这样就可以得出剔除字符之和的最小值。然后看了Discuss的解法,利用的也是求最长公共子序列的方法。不相同的就累加起来,相同的字符就跳过。

Code

class Solution {
    public int minimumDeleteSum(String s1, String s2) {
        if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
            return 0;
        }
        int m = s1.length(), n = s2.length();
        char[] c1 = s1.toCharArray();
        char[] c2 = s2.toCharArray();
        int[][] dp = new int[m + 1][n +1];
        for (int i = 1; i <= m; i++) {
            dp[i][0] = dp[i - 1][0] + Integer.valueOf(c1[i - 1]);
        }
        for (int j = 1; j <= n; j++) {
            dp[0][j] = dp[0][j - 1] + Integer.valueOf(c2[j-1]);
        }
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                if (c1[i-1] == c2[j-1]) {
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    dp[i][j] = Math.min(dp[i-1][j] + Integer.valueOf(c1[i - 1]),
                            dp[i][j-1] + Integer.valueOf(c2[j - 1]));
                }
            }
        }
        return dp[m][n];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值