Description
Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.
Example 1:
Input: s1 = "sea", s2 = "eat"
Output: 231
Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
Deleting "t" from "eat" adds 116 to the sum.
At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.
Example 2:
Input: s1 = "delete", s2 = "leet"
Output: 403
Explanation: Deleting "dee" from "delete" to turn the string into "let",
adds 100[d]+101[e]+101[e] to the sum. Deleting "e" from "leet" adds 101[e] to the sum.
At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which are higher.
Note:
- 0 < s1.length, s2.length <= 1000.
- All elements of each string will have an ASCII value in [97, 122].
Discuss
这是一道动态规划的题目.我原本的思路是找出最长公共子序列,然后求出一个字符值之和最大的序列,这样就可以得出剔除字符之和的最小值。然后看了Discuss的解法,利用的也是求最长公共子序列的方法。不相同的就累加起来,相同的字符就跳过。
Code
class Solution {
public int minimumDeleteSum(String s1, String s2) {
if (s1 == null || s2 == null || s1.length() == 0 || s2.length() == 0) {
return 0;
}
int m = s1.length(), n = s2.length();
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();
int[][] dp = new int[m + 1][n +1];
for (int i = 1; i <= m; i++) {
dp[i][0] = dp[i - 1][0] + Integer.valueOf(c1[i - 1]);
}
for (int j = 1; j <= n; j++) {
dp[0][j] = dp[0][j - 1] + Integer.valueOf(c2[j-1]);
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (c1[i-1] == c2[j-1]) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = Math.min(dp[i-1][j] + Integer.valueOf(c1[i - 1]),
dp[i][j-1] + Integer.valueOf(c2[j - 1]));
}
}
}
return dp[m][n];
}
}