深度学习小白装机-记录一下

深度学习小白装机-记录一下

三个备选清单。

原本早就有攒一部机器的想法,最近刚刚好在玩深度学习的小案例,所以产生了装一部自己的台式机的想法。
下面均是自己查资料所得,可能与实际有差入。出错了,我也不负责呀,哈哈。关于价格,我是根据某东自营店价格(截至2019-09)来做比较的,可能不同时间段有差入,价格因素需要自己衡量高低。
我根据不同的价格成本和预设的使用场景设计了三个不同的方案。
先说结论,我最终选择的清单3 学生党版。配置是i5-9600kf+gtx1660ti 。这个清单上GTX 1660ti的显存是6G,cuda核心是1536个,显存频率为9000MHz,显存位宽192bit,这个性能用于应对Kaggle等上中小型数据集的比赛应该是比较足够的。


清单1 工作站版
考虑可以扩展4GPU 的工作站级别
这里包括预留的电源功率空间和CPU频率最多可以挂载2
CPU。
虽然这个主板属于服务器主板,可以挂载4GPU,但是不建议自己搭建负载4GPU的工作站。因为工作站成本本来就高,例如配置目前来说顶级的显卡RTX2080ti,价格会高达1.3w块左右(截至2019-09),光显卡成本就高达5.2w了。搭配CPU等其他配件时,成本会更高。建议有这个资金,不妨请专业的厂家去定制,保修包括购买配件都比较更方便些。

部件型号购买网址价格
GPU选择ZOTAC 索泰 RTX2070super 至尊 Plus OC v2https://item.jd.com/100008096376.html4099
CPU选择【酷睿】6代CPU i7-6800Khttps://item.jd.com/2997160.html3399
CPU风扇安钛克Antec 风冷散热器 台式电脑C400https://item.jd.com/55042680693.html129
SSD固态选择英睿达(Crucial)1TB SSD固态硬盘 M.2接口(NVMe协议)https://item.jd.com/100001164000.html799
HD硬盘选择西部数据WD 蓝盘3TB SATA 6Gb/s64MB 台式机机械硬盘WD30EZRZhttps://item.jd.com/2031262.html499
RAM内存条美商海盗船(USCORSAIR)DDR4 3200 16GB(8G×2)套装https://item.jd.com/2722809.html?dist=jd649
机箱酷冷至尊(CoolerMaster)MasterBox Pro 5 中塔式机箱 支持EATX主板https://item.jd.com/5065987.html499
主板华硕(ASUS) X99-E WS/USB3.1工作站主板 2011-3 4路SLi交火https://item.jd.com/10375709700.html4499
备选主板【二手95新】微星(MSI)X99Ahttps://item.paipai.com/49344120854.html1199
电源EVGA 艾维克 1200W P2 白金全模组https://item.jd.com/47208826568.html2099
合计价格(全新主板)16671
合计价格(二手主板)13371

扩展方案:
目前该方案明显瓶颈是在单GPU和16G的RAM内存上。简单粗暴升级的方法可以是加GPU和加RAM内存条。
最终方案:RTX2070super * 2, DDR4 3200 8G * 4,即得到16G的显存和32G的RAM内存。
一般RAM内存容量和GPU内存容量达到2:1,内存条就不太会成为瓶颈。


清单2 双GPU扩展版
考虑到深度学习对CPU核心数和线程数要求并不高,要求每GPU搭配至少2核心或2线程即可,反而对
主频频率和睿频频率、乃至是否可以超频有所要求。故而我选择了价格比比较实惠而主频比较高的
i5 9600kf。注意在后面加上k代表支持超频,不带k代表不支持超频。一般来说带k的默认主频都会比
不带k的要高一些。Z系列主板对超频处理支持比较好,我的CPU是支持超频的主板华硕Z370-A II。
同时该主板是支持Nvidia 2-Way SLI技术,也即双路GPU并排使用技术。需要注意的是,并不是所有Z370的主板都支持该技术的,买的时候最好上中关村查一下。
在选择电源是需要考虑扩展到双GPU的功率,故而预留多余功率至1000w左右,而EVGA是美国厂商,虽然大概率是在made in china,但是P2白金型全模组电源是属于比较优秀的电源,质保年限也在十年,比国内其他厂商要长。

部件型号购买网址价格
GPU选择ZOTAC 索泰 RTX2070super 至尊 Plus OC v2https://item.jd.com/100008096376.html4099
CPU选择i5-9600kf 酷睿6核心6线程 3.7GHz 睿频4.6GHzhttps://item.jd.com/100003026162.html1699
CPU风扇安钛克Antec 风冷散热器 台式电脑C400https://item.jd.com/55042680693.html129
SSD固态选择英睿达(Crucial)1TB SSD固态硬盘 M.2接口(NVMe协议)https://item.jd.com/100001164000.html799
HD硬盘选择西部数据WD 蓝盘3TB SATA 6Gb/s64MB 台式机机械硬盘WD30EZRZhttps://item.jd.com/2031262.html499
RAM内存条美商海盗船(USCORSAIR)DDR4 3200 16GB(8G×2)套装https://item.jd.com/2722809.html?dist=jd649
机箱酷冷至尊(CoolerMaster)MasterBox Pro 5 中塔式机箱 支持EATX主板https://item.jd.com/5065987.html499
主板华硕PRIME Z370-A IIhttps://item.jd.com/100004366045.html1299
电源EVGA 艾维克 1000W P2 白金全模组https://item.jd.com/47208826568.html1699
合计价格12472

扩展方案
目前该方案明显瓶颈是在单GPU和16G的RAM内存上。简单粗暴升级的方法可以是加GPU和加RAM内存条。
最终方案:RTX2070super * 2, DDR4 3200 8G * 4,即得到16G的显存和32G的RAM内存。
一般RAM内存容量和GPU内存容量达到2:1,内存条就不太会成为瓶颈。

除此之外瓶颈是在cpu的核心频率和线程数上,但是提升核心频率和线程数量对深度学习的训练性能提升有限。


清单3 单GPU 学生党版

部件型号购买网址价格
GPU选择七彩虹(Coloful)iGame GTX-1660ti GDDR6 6G显存 1860MHZ 192bithttps://item.jd.com/100003098848.html2049
CPU选择i5-9600kf 酷睿6核心6线程 3.7GHz 睿频4.6GHzhttps://item.jd.com/100003026162.html1699
CPU风扇酷冷至尊(Cooler Master) T400i CPU 散热器https://item.jd.com/2771147.html89
SSD固态选择英睿达(Crucial)1TB SSD固态硬盘 M.2接口(NVMe协议)https://item.jd.com/100001164000.html799
HD硬盘选择西部数据WD 蓝盘3TB SATA 6Gb/s64MB 台式机机械硬盘WD30EZRZhttps://item.jd.com/2031262.html499
RAM内存条美商海盗船(USCORSAIR)DDR4 3200 16GB(8G×2)套装https://item.jd.com/2722809.html?dist=jd649
机箱酷冷至尊(CoolerMaster)MB520(旋风520)https://item.jd.com/100000154107.html299
主板华硕PRIME Z370-A IIhttp://detail.zol.com.cn/1290/1289604/param.shtml1299
电源长城(Great Wall)额定550W G5金牌版全模电脑电源https://item.jd.com/100001648498.html499
合计价格7881
除CPU和GPU4133

扩展方案
此方案为穷人版,所以后续扩展余量不大,但优点是价格相对实惠。比较适合宿舍学生党使用。
后续升级可以增加内存条。


屏幕选择

比较标准的配置是1主机2屏幕,当然桌子放得下或者有钱都可以配置3屏幕,这个看着喜好或者条件允许。
这里讲一下尺寸,分辨率,是否曲面,刷新率等4个选屏幕比较纠结的事情。当然还有品牌问题,这个只要是正规比较出名的厂家一般没什么问题,主流有三星,戴尔,AOC等。

  • 关于尺寸,考虑自己使用空间范围,一般24,27都够用,32寸属于偏大一些。
  • 关于分辨率,如果是24寸及以下的2k的视觉上感觉不是特别明显的,所有24寸(<=24)1080p基本足够,如果尺寸更大(>=27)可以选择2k及以上,当然选择越高清越好了。
  • 关于是否曲面,因为曲面对分辨率清晰度没有影响!!对!!就是没有影响。只是把屏幕做弯曲了而已,价格也加了好几百块,所以看个人爱好吧。
  • 关于刷新率,因为现在很多屏幕主打144hz刷新率,但是这个跟你的显卡息息相关。如果你的显卡属于比较便宜的类型,对高刷新率屏幕性能会发挥不出来,当然喜欢打游戏,配置高显这个问题就不存在了。

定位好自己的用途

不要盲目跟风配置最新型号、最大显存的GPU。当然,土豪请忽略这一点。
我的用途主要是Kaggle或者同类型的比赛如天池,DataCastle。
因此,我的配置是i5-9600kf+gtx1660ti 显存6g能应付比较中小型数据集的比赛。需要参加更大的
比赛可以考虑云服务器之类的,比如白x的Google Colab,Tesla K80 12g内存那还是相当不错了。
缺点是如果vpn链接不稳定,很容易断开,然后重头开始…当然还有其他的云服务器,都可以去尝试。

用途与其对应显存大小建议

原则就是根据不同用途选择不同大小的显存大小。
不清楚自己能用到多少内存大小的,可以参考Tim Dettmers的装机建议 Tim-Blog

  • Research that is hunting state-of-the-art scores: >=11 GB
  • Research that is hunting for interesting architectures: >=8 GB
  • Any other research: 8 GB
  • Kaggle: 4 – 8 GB
  • Startups: 8 GB (but check the specific application area for model sizes)
  • Companies: 8 GB for prototyping, >=11 GB for training

参考:

A Full Hardware Guide to Deep Learning-TimDettmers

配置深度学习主机与环境(TensorFlow+1080Ti)-jianshu-DexterLei

深度学习工作站搭建全过程-cdsn-wuya

<think>好的,用户想了解如何配置适合深度学习的电脑硬件和环境搭建,特别是GPU推荐。首先,我需要整理用户提供的三个引用内容,看看有没有可以直接利用的信息。引用1提到了PyTorch的环境配置,包括CPU和GPU版本,还推荐了B站的教程视频。引用2详细说明了如何检查CUDA与显卡的匹配,通过NVIDIA控制面板查看CUDA型号。引用3则是在Ubuntu下配置深度学习环境,提到了更换国内源和系统升级。 接下来,用户的问题主要集中在硬件配置和环境搭建。我需要分步骤来回答:硬件配置、软件环境、GPU选择与驱动安装、框架安装、验证配置,最后生成相关问题。 硬件配置方面,用户可能需要知道CPU、内存、存储、电源和主板的选择。GPU是关键,所以需要重点推荐,比如NVIDIA的RTX 3090、4080等,显存至少8GB,推荐12GB以上。还要提到CUDA核心数量对计算速度的影响。 软件环境部分,操作系统推荐Ubuntu,但Windows也可以。然后要强调CUDA和cuDNN的安装,引用2中提到如何查看CUDA型号,需要确保显卡驱动支持的CUDA版本与框架要求的匹配。安装CUDA和cuDNN的步骤可能需要详细说明,但用户提供的引用中没有详细步骤,可能需要结合一般知识。 框架安装如PyTorch,引用1推荐了教程视频,应该提到使用conda或pip安装,并注意CUDA版本。验证安装部分,需要示例代码检查GPU是否可用,可能引用用户提到的PyTorch代码示例。 环境配置注意事项,引用3提到更换国内源加速下载,系统升级,以及虚拟环境的使用。这些都需要包含在回答中。 最后,生成相关问题需要考虑用户可能的后续需求,比如不同框架的环境差异、云服务选择、硬件不足的替代方案、多GPU配置、环境冲突解决等。 需要确保所有数学表达式用$...$格式,独立公式用$$...$$,但这次回答可能数学公式较少,主要关注代码和配置步骤。检查LaTeX语法是否正确,用中文回答,结构清晰,分点说明,并自然添加引用标识。</think>### 深度学习电脑硬件配置与环境搭建指南 #### 一、硬件配置核心要求 1. **GPU推荐** - **型号选择**:优先选择NVIDIA显卡(因CUDA生态支持完善),如$RTX 3090$、$RTX 4080$或$A100$(专业级)。显存建议至少$8\text{GB}$,复杂模型推荐$12\text{GB}$以上[^1]。 - **算力匹配**:通过`NVIDIA控制面板`查看显卡支持的CUDA版本(如$11.8$),需与深度学习框架要求的CUDA版本一致[^2]。 - **CUDA核心数**:直接影响并行计算速度,例如$RTX 3090$含$10496$个CUDA核心。 2. **其他硬件** - **CPU**:至少$8$核处理器(如Intel i7或AMD Ryzen 7),避免成为数据预处理瓶颈。 - **内存**:$32\text{GB}$起步,大型数据集需$64\text{GB}$。 - **存储**:$1\text{TB}$ NVMe SSD加速数据读写,机械硬盘用于冷数据备份。 - **电源与散热**:GPU功耗较高(如$RTX 4090$需$450\text{W}$),建议$850\text{W}$金牌电源。 #### 二、软件环境搭建步骤 1. **操作系统** - 推荐Ubuntu $20.04/22.04$(对GPU支持更友好)[^3],Windows可通过WSL2兼容。 2. **驱动与CUDA安装** ```bash # Ubuntu示例:安装NVIDIA驱动与CUDA sudo apt install nvidia-driver-535 sudo apt install cuda-11-8 ``` 安装后通过`nvidia-smi`验证驱动状态。 3. **cuDNN与框架集成** - 从NVIDIA官网下载匹配CUDA版本的cuDNN库,解压后复制到CUDA目录: ```bash sudo cp cudnn-linux-x86_64-8.9.3.28_cuda11-archive/include/* /usr/local/cuda-11.8/include/ sudo cp cudnn-linux-x86_64-8.9.3.28_cuda11-archive/lib/* /usr/local/cuda-11.8/lib64/ ``` 4. **深度学习框架安装** PyTorch环境配置示例(使用conda): ```bash conda create -n pytorch_env python=3.9 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 通过代码验证GPU是否可用: ```python import torch print(torch.cuda.is_available()) # 输出应为True ``` #### 三、环境配置注意事项 1. **国内镜像加速**:更换`pip`/`conda`源(如阿里云、清华源)提升依赖下载速度。 2. **系统级隔离**:使用Docker或虚拟环境(如`conda`)避免依赖冲突。 3. **监控工具**:安装`nvtop`或`gpustat`实时监控GPU利用率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值