1、编写一个Python函数,接受一个字符串作为参数,判断一个字符串是不是回文字符串,返回值是一个布尔类型。
def fun(():
s = s.replace(" ", "").lower()
return s == s[::-1]
# 测试函数
print(is_palindrome("hello")) # 输出: False
print(is_palindrome("racecar")) # 输出: True
2、编写一个Python程序,解决以下问题:现在有三个数,分别为a,b,c,它们之间的和为19,取值范围1
# 初始化计数器
count = 0
# 遍历所有可能的组合
for a in range(1, 10):
for b in range(1, 10):
for c in range(1, 10):
# 检查是否满足条件
if a + b + c == 19 and a != b and b != c and a != c:
count += 1
# 打印出满足条件的组合(可选)
print(f"a = {a}, b = {b}, c = {c}")
# 输出满足条件的组合数量
print(f"满足条件的组合数量为: {count}")
3、编写一个Python程序,使用列表推导式创建一个包含1到20之间所有平方数的列表。
# 通过列表推导式,计算1到20之间所有数的平方,并存储于squares列表中
squares = [x**2 for x in range(1, 21)]
# 打印出生成的平方数列表
print(squares)
4、编写一个递归函数,求n的阶乘。
def factorial(n):
# 基准情况:如果n为0或1,则返回1
if n == 0 or n == 1:
return 1
# 递归情况:n乘以(n-1)的阶乘
else:
return n * factorial(n - 1)
# 测试函数
print(factorial(5)) # 输出: 120
print(factorial(10)) # 输出: 3628800
5、编写一个python函数,计算并返回100到200之间所有的素数列表。
def is_prime(n):
"""判断一个数是否是素数"""
if n <= 1:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
def primes_between_100_and_200():
"""返回100到200之间的所有素数列表"""
primes = []
for num in range(100, 201):
if is_prime(num):
primes.append(num)
return primes
# 测试函数
print(primes_between_100_and_200())
6、编写一个python函数,可接收一个数字列表,并返回其中的最大值和最小值, 要求:不可以在自定义函数内调用python内置函数。
def find_max_min(numbers):
# 首先,我们检查列表是否为空
if not numbers:
return None, None # 如果列表为空,则返回None对
# 初始化最大值和最小值为列表的第一个元素
max_value = numbers[0]
min_value = numbers[0]
# 遍历列表中的每一个元素
for num in numbers[1:]: # 从第二个元素开始遍历
# 如果当前元素比当前最大值大,则更新最大值
if num > max_value:
max_value = num
# 如果当前元素比当前最小值小,则更新最小值
if num < min_value:
min_value = num
# 返回找到的最大值和最小值
return max_value, min_value
# 测试这个函数
numbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
max_val, min_val = find_max_min(numbers)
print(f"最大值: {max_val}, 最小值: {min_val}")
7、编写一个python函数,可接收一个列表和要查找的值key,使用顺序查找法,输出key在列表中的下标,找不到的话,输出-1,要求:不可以在定义函数内调用python内置方法。
def sequential_search(lst, key):
# 遍历列表中的每一个元素及其对应的下标
for index in range(len(lst)):
# 如果找到与key相等的元素,返回其下标
if lst[index] == key:
return index
# 如果遍历完列表仍未找到key,返回-1
return -1
# 测试这个函数
my_list = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]
key_to_find = 5
index = sequential_search(my_list, key_to_find)
print(f"Key {key_to_find} found at index: {index}")
8、编写一个递归函数,返回第n项斐波那契数列的值。
def fibonacci(n):
# 递归的基本情况:当n为1或2时,直接返回1
if n == 1 or n == 2:
return 1
# 递归的递推关系:第n项是前两项之和
else:
return fibonacci(n - 1) + fibonacci(n - 2)
# 测试这个函数
n = 10
print(f"斐波那契数列的第{n}项是: {fibonacci(n)}")
9、使用列表推导式,生成包含10个范围在[10, 30]之间随机数的列表。
import random
# 利用列表推导式和random.randint函数生成随机数列表
random_numbers = [random.randint(10, 30) for _ in range(10)]
# 打印生成的随机数列表
print(random_numbers)
10、编写一个python函数,接收一个整型变量n为参数,输出n行的九九乘法表。
def print_multiplication_table(n):
# 外层循环:控制乘法表的行数
for i in range(1, n + 1):
# 内层循环:打印每一行的乘法表达式
for j in range(1, i + 1):
# 使用格式化字符串打印乘法表达式,确保对齐
print(f"{j} * {i} = {j * i}", end='\t')
# 打印完一行后换行
print()
# 测试函数,输出n=9时的九九乘法表
n = 9
print_multiplication_table(n)
11、编写一个python函数,接收一个整型变量n为参数,输出n行的杨辉三角形。
def print_yanghui_triangle(n):
# 初始化一个空列表来存储杨辉三角形的每一行
triangle = []
# 外层循环:控制杨辉三角形的行数
for i in range(n):
# 初始化当前行的列表,第一个元素总是1
row = [1] * (i + 1)
# 对于不是第一行的行,计算中间的元素
for j in range(1, i):
# 中间的元素等于它正上方和左上方两个元素之和
row[j] = triangle[i - 1][j - 1] + triangle[i - 1][j]
# 将当前行添加到杨辉三角形的列表中
triangle.append(row)
# 打印当前行
print(' '.join(map(str, row)))
# 测试函数,输出n=5时的杨辉三角形
n = 5
print_yanghui_triangle(n)