[bzoj2301][HAOI2011]Problem b 莫比乌斯反演

Description

 

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。


 

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



 

Sample Output


14

3



 

HINT

 



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
 

 

Source

 

思维难度:省选

代码难度:NOIP+

算法:莫比乌斯反演

// luogu-judger-enable-o2
#include<cstdio>
#include<iostream>
#define ll long long
using namespace std;
const int Maxn=10000005;
ll pri[Maxn/10],u[Maxn],sum[Maxn],k,t,a,b,c,d;
bool vis[Maxn];
inline ll mn(ll x,ll y){
    return x<y?x:y;
}
inline ll read(){//快速读入,卡常必备 
    ll x=0;char c=getchar();
    while(c<'0'||c>'9'){c=getchar();}
    while(c<='9'&&c>='0'){x=x*10;x=x+c-'0';c=getchar();}
    return x;
}
void prep(){//预处理 
    u[1]=1;
    for(int i=2;i<=Maxn;++i){//筛素数+求莫比乌斯函数 
        if(!vis[i]){pri[++k]=i;u[i]=-1;}
        for(int j=1;j<=k&&pri[j]*i<=Maxn;++j){
            vis[pri[j]*i]=1;
            if(i%pri[j]==0)break;
            u[pri[j]*i]=-u[i];
        }
    }
    for(int i=1;i<=Maxn;++i){
        sum[i]=sum[i-1]+u[i];//前缀和 
    }
}
inline ll work(ll n,ll m,ll d){
    ll x,ans=0,lim;n/=d;m/=d;
    lim=mn(n,m);
    for(int i=1;i<=lim;i=x+1){
        x=mn(n/(n/i),m/(m/i));//分块 
        ans+=(n/i)*(m/i)*(sum[x]-sum[i-1]);
    }
    return ans;
}
int main(){
    prep();
    scanf("%lld",&t);
    while(t--){
        a=read();b=read();c=read();d=read();k=read();
        printf("%lld\n",work(a-1,c-1,k)+work(b,d,k)-work(a-1,d,k)-work(b,c-1,k));
    }
    return 0;
}

 

发布了88 篇原创文章 · 获赞 115 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览