- 博客(11)
- 收藏
- 关注
原创 【深度学习】—— 线性回归模型
为了更好的学习深度神经网络,本文介绍了线性神经网络中较为简单的线性回归模型,并演示了神经网络的整个训练过程,包括:定义简单的神经网络架构、数据处理、指定损失函数和如何训练模型。模型相对简单,但包含深度学习中模型训练的基本思想,为以后学习更复杂的模型打下基础。
2024-10-31 16:21:01 788
原创 【docker】—— 部署python项目
Docker 是一个开源平台,用于自动化应用程序的部署、扩展和管理。它通过容器技术实现轻量级、可移植的应用打包,确保在不同环境中应用的一致性。本文使用docker简单演示了如何部署一个python项目。
2024-10-29 14:38:39 1617
原创 【强化学习】—— Q-learning算法
Q-learning 是一种无模型的强化学习算法,用于寻找最优策略以最大化累积奖励。它通过学习一个状态-动作值函数Qsa,该函数表示在状态 ( s ) 下执行动作 ( a ) 的预期收益。
2024-10-23 16:56:22 725
原创 【影响力最大化】—— 次模性理论和应用
传播模型的次模性(Submodularity of propagation models)通常指的是在影响力最大化等传播问题中,影响力函数具有次模性特征。次模性是一种集合函数性质,它类似于“递减增益”的概念
2024-10-20 20:17:54 202
原创 【影响力最大化】——影响力扩展度计算(蒙特卡洛模拟近似)
计算影响力拓展度的一个简单的方法是反复模拟在某个种子结点集合S之下影响力的传播过程,统计这些模拟过程中被激活结点个数的平均值,用这个平均值作为种子集合S的影响力扩展度σ (S)的估计值。这种模拟估计的方法通常被称为蒙特卡洛模拟(Monte Carlo Simulation)。
2024-10-19 21:42:39 544
原创 【文献阅读】用迁移学习促进竞争影响最大化中的强化学习
本文提出了一种基于TV-CLT模型的迁移学习强化学习方法来解决TC-CIM问题。具体来说,我们将源网络和目标网络的状态表示归一化,以便有效地利用源网络上获得的知识。进一步,我们在RL域扩展了TL的起点方法,提出了NSQ-TL算法来解决源目标网络和代理设置之间的异构性。
2024-10-16 22:21:09 1191
原创 【大数据网络传播模型和算法-陈卫】——影响力最大化【持续更新】
影响力最大化(Influence Maximization)是一种经典的组合优化问题,旨在选择少数用户,从而最大限度地扩大在线社交网络的影响力
2024-10-15 22:18:48 803
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人