给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,1]
输出: 1
示例 2:
输入: [4,1,2,1,2]
输出: 4
这个题我们一般想到的就是用位运算对它进行解决,即异或
下面是异或的几个运算规律:
- 1^1=0;
- 1^0=1;
- 0^1=1;
- 0^0=0;
也就说0和1异或的时候相同的异或结果为0,不同的异或结果为1,根据上面的规律我们得到
- a^a=0;自己和自己异或等于0
- a^0=a;任何数字和0异或还等于他自己
- a^b^c=a^c^b;异或运算具有交换律
有了这3个规律,这题就很容易解了,我们只需要把所有的数字都异或一遍,最终的结果就是我们要求的那个数字。来看下代码
int singleNumber(int* nums, int numsSize){
int ret=nums[0];
for(int i=1;i<numsSize;i++)
{
ret=nums[0]^nums[i];
nums[0]=ret;
}
return ret;
}
这里需要注意的几个点:
1.ret的初始化。当我们对ret进行初始化的时候,很容易将它初始化为0,但由于ret用来接收异或的值,假如这个数组只有一个元素,或者没有元素,这个时候,我们把ret再赋值给nums[0],返回ret,返回值就是0了,所以可能会报错,因此,我们就直接将nums[0]的指赋给ret.
2.循环要从第二个元素开始,因为我们将其它元素都与第一个值进行异或。
因此,我们可以对代码进行简化,代码如下:
int singleNumber(int* nums, int numsSize){
for(int i=1;i<numsSize;i++)
nums[0]^=nums[i];
return nums[0];
}